skip to main content

This content will become publicly available on March 8, 2023

Title: Phylogenetic analysis of adaptation in comparative physiology and biomechanics: overview and a case study of thermal physiology in treefrogs
ABSTRACT Comparative phylogenetic studies of adaptation are uncommon in biomechanics and physiology. Such studies require data collection from many species, a challenge when this is experimentally intensive. Moreover, researchers struggle to employ the most biologically appropriate phylogenetic tools for identifying adaptive evolution. Here, we detail an established but greatly underutilized phylogenetic comparative framework – the Ornstein–Uhlenbeck process – that explicitly models long-term adaptation. We discuss challenges in implementing and interpreting the model, and we outline potential solutions. We demonstrate use of the model through studying the evolution of thermal physiology in treefrogs. Frogs of the family Hylidae have twice colonized the temperate zone from the tropics, and such colonization likely involved a fundamental change in physiology due to colder and more seasonal temperatures. However, which traits changed to allow colonization is unclear. We measured cold tolerance and characterized thermal performance curves in jumping for 12 species of treefrogs distributed from the Neotropics to temperate North America. We then conducted phylogenetic comparative analyses to examine how tolerances and performance curves evolved and to test whether that evolution was adaptive. We found that tolerance to low temperatures increased with the transition to the temperate zone. In contrast, jumping well at colder temperatures more » was unrelated to biogeography and thus did not adapt during dispersal. Overall, our study shows how comparative phylogenetic methods can be leveraged in biomechanics and physiology to test the evolutionary drivers of variation among species. « less
; ; ; ;
Award ID(s):
1655812 1942893
Publication Date:
Journal Name:
Journal of Experimental Biology
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Cities are emerging as a new venue to overcome the challenges of obtaining data on compensatory responses to climatic warming through phenotypic plasticity and evolutionary change. In this Review, we highlight how cities can be used to explore physiological trait responses to experimental warming, and also how cities can be used as human-made space-for-time substitutions. We assessed the current literature and found evidence for significant plasticity and evolution in thermal tolerance trait responses to urban heat islands. For those studies that reported both plastic and evolved components of thermal tolerance, we found evidence that both mechanisms contributed to phenotypic shifts in thermal tolerance, rather than plastic responses precluding or limiting evolved responses. Interestingly though, for a broader range of studies, we found that the magnitude of evolved shifts in thermal tolerance was not significantly different from the magnitude of shift in those studies that only reported phenotypic results, which could be a product of evolution, plasticity, or both. Regardless, the magnitude of shifts in urban thermal tolerance phenotypes was comparable to more traditional space-for-time substitutions across latitudinal and altitudinal clines in environmental temperature. We conclude by considering how urban-derived estimates of plasticity and evolution of thermal tolerance traits canmore »be used to improve forecasting methods, including macrophysiological models and species distribution modelling approaches. Finally, we consider areas for further exploration including sub-lethal performance traits and thermal performance curves, assessing the adaptive nature of trait shifts, and taking full advantage of the environmental thermal variation that cities generate.« less
  2. Abstract

    As coral reefs struggle to survive under climate change, it is crucial to know whether they have the capacity to withstand changing conditions, particularly increasing seawater temperatures. Thermal tolerance requires the integrative response of the different components of the coral holobiont (coral host, algal photosymbiont, and associated microbiome). Here, using a controlled thermal stress experiment across three divergent Caribbean coral species, we attempt to dissect holobiont member metatranscriptome responses from coral taxa with different sensitivities to heat stress and use phylogenetic ANOVA to study the evolution of gene expression adaptation. We show that coral response to heat stress is a complex trait derived from multiple interactions among holobiont members. We identify host and photosymbiont genes that exhibit lineage-specific expression level adaptation and uncover potential roles for bacterial associates in supplementing the metabolic needs of the coral-photosymbiont duo during heat stress. Our results stress the importance of integrative and comparative approaches across a wide range of species to better understand coral survival under the predicted rise in sea surface temperatures.

  3. Abstract The rocky intertidal zone is a highly dynamic and thermally variable ecosystem, where the combined influences of solar radiation, air temperature and topography can lead to differences greater than 15°C over the scale of centimetres during aerial exposure at low tide. For most intertidal organisms this small-scale heterogeneity in microclimates can have enormous influences on survival and physiological performance. However, the potential ecological importance of environmental heterogeneity in determining ecological responses to climate change remains poorly understood. We present a novel framework for generating spatially explicit models of microclimate heterogeneity and patterns of thermal physiology among interacting organisms. We used drone photogrammetry to create a topographic map (digital elevation model) at a resolution of 2 × 2 cm from an intertidal site in Massachusetts, which was then fed into to a model of incident solar radiation based on sky view factor and solar position. These data were in turn used to drive a heat budget model that estimated hourly surface temperatures over the course of a year (2017). Body temperature layers were then converted to thermal performance layers for organisms, using thermal performance curves, creating ‘physiological landscapes’ that display spatially and temporally explicit patterns of ‘microrefugia’. Our framework shows how non-linear interactionsmore »between these layers lead to predictions about organismal performance and survivorship that are distinct from those made using any individual layer (e.g. topography, temperature) alone. We propose a new metric for quantifying the ‘thermal roughness’ of a site (RqT, the root mean square of spatial deviations in temperature), which can be used to quantify spatial and temporal variability in temperature and performance at the site level. These methods facilitate an exploration of the role of micro-topographic variability in driving organismal vulnerability to environmental change using both spatially explicit and frequency-based approaches.« less
  4. ABSTRACT Animals are known to regulate the composition of their cell membranes to maintain key biophysical properties in response to changes in temperature. For deep-sea marine organisms, high hydrostatic pressure represents an additional, yet much more poorly understood, perturbant of cell membrane structure. Previous studies in fish and marine microbes have reported correlations with temperature and depth of membrane-fluidizing lipid components, such as polyunsaturated fatty acids. Because little has been done to isolate the separate effects of temperature and pressure on the lipid pool, it is still not understood whether these two environmental factors elicit independent or overlapping biochemical adaptive responses. Here, we use the taxonomic and habitat diversity of the phylum Ctenophora to test whether distinct low-temperature and high-pressure signatures can be detected in fatty acid profiles. We measured the fatty acid composition of 105 individual ctenophores, representing 21 species, from deep and shallow Arctic, temperate, and tropical sampling locales (sea surface temperature, −2° to 28°C). In tropical and temperate regions, remotely operated submersibles (ROVs) enabled sampling down to 4000 m. We found that among specimens with body temperatures 7.5°C or colder, depth predicted fatty acid unsaturation levels. In contrast, in the upper 200 m of the water column, temperature predictedmore »fatty acid chain lengths. Taken together, our findings suggest that lipid metabolism may be specialized with respect to multiple physical variables in diverse marine environments. Largely distinct modes of adaptation to depth and cold imply that polar marine invertebrates may not find a ready refugium from climate change in the deep.« less
  5. Abstract

    The evolution of complex dentitions in mammals was a major innovation that facilitated the expansion into new dietary niches, which imposed selection for tight form–function relationships. Teeth allow mammals to ingest and process food items by applying forces produced by a third-class lever system composed by the jaw adductors, the cranium, and the mandible. Physical laws determine changes in jaw adductor (biting) forces at different bite point locations along the mandible (outlever), thus, individual teeth are expected to experience different mechanical regimes during feeding. If the mammal dentition exhibits functional adaptations to mandible feeding biomechanics, then teeth are expected to have evolved to develop mechanically advantageous sizes, shapes, and positions. Here, we present bats as a model system to test this hypothesis and, more generally, for integrative studies of mammal dental diversity. We combine a field-collected dataset of bite forces along the tooth row with data on dental and mandible morphology across 30 bat species. We (1) describe, for the first time, bite force trends along the tooth row of bats; (2) use phylogenetic comparative methods to investigate relationships among bite force patterns, tooth, and mandible morphology; and (3) hypothesize how these biting mechanics patterns may relate to themore »developmental processes controlling tooth formation. We find that bite force variation along the tooth row is consistent with predictions from lever mechanics models, with most species having the greatest bite force at the first lower molar. The cross-sectional shape of the mandible body is strongly associated with the position of maximum bite force along the tooth row, likely reflecting mandibular adaptations to varying stress patterns among species. Further, dental dietary adaptations seem to be related to bite force variation along molariform teeth, with insectivorous species exhibiting greater bite force more anteriorly, narrower teeth and mandibles, and frugivores/omnivores showing greater bite force more posteriorly, wider teeth and mandibles. As these craniodental traits are linked through development, dietary specialization appears to have shaped intrinsic mechanisms controlling traits relevant to feeding performance.

    « less