skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Learning to Mediate Disparities Towards Pragmatic Communication
Human communication is a collaborative process. Speakers, on top of conveying their own intent, adjust the content and language expressions by taking the listeners into account, including their knowledge background, personalities, and physical capabilities. Towards building AI agents with similar abilities in language communication, we propose Pragmatic Rational Speaker (PRS), a framework extending Rational Speech Act (RSA). The PRS attempts to learn the speaker-listener disparity and adjust the speech accordingly, by adding a light-weighted disparity adjustment layer into working memory on top of speaker’s long-term memory system. By fixing the long-term memory, the PRS only needs to update its working memory to learn and adapt to different types of listeners. To validate our framework, we create a dataset that simulates different types of speaker-listener disparities in the context of referential games. Our empirical results demonstrate that the PRS is able to shift its output towards the language that listeners are able to understand, significantly improve the collaborative task outcome.  more » « less
Award ID(s):
1949634
PAR ID:
10321126
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For much of its history, categorical perception was treated as a foundational theory of speech perception, which suggested that quasi-discrete categorization was a goal of speech perception. This had a profound impact on bilingualism research which adopted similar tasks to use as measures of nativeness or native-like processing, implicitly assuming that any deviation from discreteness was a deficit. This is particularly problematic for listeners like heritage speakers whose language proficiency, both in their heritage language and their majority language, is questioned. However, we now know that in the monolingual listener, speech perception is gradient and listeners use this gradiency to adjust subphonetic details, recover from ambiguity, and aid learning and adaptation. This calls for new theoretical and methodological approaches to bilingualism. We present the Visual Analogue Scaling task which avoids the discrete and binary assumptions of categorical perception and can capture gradiency more precisely than other measures. Our goal is to provide bilingualism researchers new conceptual and empirical tools that can help examine speech categorization in different bilingual communities without the necessity of forcing their speech categorization into discrete units and without assuming a deficit model. 
    more » « less
  2. Abstract Despite thelack of invariance problem(the many‐to‐many mapping between acoustics and percepts), human listeners experience phonetic constancy and typically perceive what a speaker intends. Most models of human speech recognition (HSR) have side‐stepped this problem, working with abstract, idealized inputs and deferring the challenge of working with real speech. In contrast, carefully engineered deep learning networks allow robust, real‐world automatic speech recognition (ASR). However, the complexities of deep learning architectures and training regimens make it difficult to use them to provide direct insights into mechanisms that may support HSR. In this brief article, we report preliminary results from a two‐layer network that borrows one element from ASR,long short‐term memorynodes, which provide dynamic memory for a range of temporal spans. This allows the model to learn to map real speech from multiple talkers to semantic targets with high accuracy, with human‐like timecourse of lexical access and phonological competition. Internal representations emerge that resemble phonetically organized responses in human superior temporal gyrus, suggesting that the model develops a distributed phonological code despite no explicit training on phonetic or phonemic targets. The ability to work with real speech is a major advance for cognitive models of HSR. 
    more » « less
  3. Previous research in speech perception has shown that perception is influenced by social factors that can result in behavioral consequences such as reduced intelligibility (i.e., a listeners’ ability to transcribe the speech they hear). However, little is known about these effects regarding Spanish speakers’ perception of heritage Spanish, Spanish spoken by individuals who have an ancestral and cultural connection to the Spanish language. Given that ideologies within the U.S. Latino community often equate Latino identity to speaking Spanish “correctly” and proficiently, there is a clear need to understand the potential influence these ideologies have on speech perception. Using a matched-guised methodology, we analyzed the influence of speaker social background information and listener social background information on speech perception. Participants completed a transcription task in which four different Spanish heritage speakers were paired with different social guises to determine if the speakers were perceived as equally intelligible under each guise condition. The results showed that social guise and listener social variables did not significantly predict intelligibility scores. We argue that the unique socio-political culture within the U.S. Latino community may lead to different effects of language ideology and social expectation on speech perception than what has been documented in previous work. 
    more » « less
  4. Purpose The “bubble noise” technique has recently been introduced as a method to identify the regions in time–frequency maps (i.e., spectrograms) of speech that are especially important for listeners in speech recognition. This technique identifies regions of “importance” that are specific to the speech stimulus and the listener, thus permitting these regions to be compared across different listener groups. For example, in cross-linguistic and second-language (L2) speech perception, this method identifies differences in regions of importance in accomplishing decisions of phoneme category membership. This research note describes the application of bubble noise to the study of language learning for 3 different language pairs: Hindi English bilinguals' perception of the /v/–/w/ contrast in American English, native English speakers' perception of the tense/lax contrast for Korean fricatives and affricates, and native English speakers' perception of Mandarin lexical tone. Conclusion We demonstrate that this technique provides insight on what information in the speech signal is important for native/first-language listeners compared to nonnative/L2 listeners. Furthermore, the method can be used to examine whether L2 speech perception training is effective in bringing the listener's attention to the important cues. 
    more » « less
  5. A prerequisite for social coordination is bidirectional communication between teammates, each playing two roles simultaneously: as receptive listeners and expressive speakers. For robots working with humans in complex situations with multiple goals that differ in importance, failure to fulfill the expectation of either role could undermine group performance due to misalignment of values between humans and robots. Specifically, a robot needs to serve as an effective listener to infer human users’ intents from instructions and feedback and as an expressive speaker to explain its decision processes to users. Here, we investigate how to foster effective bidirectional human-robot communications in the context of value alignment—collaborative robots and users form an aligned understanding of the importance of possible task goals. We propose an explainable artificial intelligence (XAI) system in which a group of robots predicts users’ values by taking in situ feedback into consideration while communicating their decision processes to users through explanations. To learn from human feedback, our XAI system integrates a cooperative communication model for inferring human values associated with multiple desirable goals. To be interpretable to humans, the system simulates human mental dynamics and predicts optimal explanations using graphical models. We conducted psychological experiments to examine the core components of the proposed computational framework. Our results show that real-time human-robot mutual understanding in complex cooperative tasks is achievable with a learning model based on bidirectional communication. We believe that this interaction framework can shed light on bidirectional value alignment in communicative XAI systems and, more broadly, in future human-machine teaming systems. 
    more » « less