skip to main content

Title: Visualization of intracellular calcium transport between cells using high frequency ultrasound and FRET live-cell imaging
The live visualization with fast kinetics of the interaction between cells has been long term challenges because of the lack of efficient stimulation methods. We propose an approach to achieve single cell resolution stimulation and FRET-base calcium live cell imaging to visualize fast kinetics of calcium transport between physically connect neighboring cells. Chemical stimulation stimulates cells within a dish at the same time and is not suitable for the study of cell-cell interaction. We replaced chemical stimulation with ultrasound-based mechanical stimulation approach to provide precise spatiotemporal resolution. To achieve this, we integrated 3D translation stages and epi-fluorescence microscope and a developed 150 MHz high frequency ultrasound with f number of 1 and aperture size of 1 mm. The 150 MHz transducer can focus within 10 micrometers in diameter and directly stimulate cells by disturbing cell plasma membranes without microbubbles. High frequency stimulation was used to introduce calcium ions into cytoplasm of cells. Results demonstrate calcium transport between cells, visualized by FRET calcium biosensor after only one cell was stimulated by the developed high frequency ultrasonic transducer.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2020 IEEE International Ultrasonics Symposium (IUS)
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Fluorescence resonance energy transfer (FRET)-based biosensors have advanced live cell imaging by dynamically visualizing molecular events with high temporal resolution. FRET-based biosensors with spectrally distinct fluorophore pairs provide clear contrast between cells during dual FRET live cell imaging. Here, we have developed a new FRET-based Ca2+ biosensor using EGFP and FusionRed fluorophores (FRET-GFPRed). Using different filter settings, the developed biosensor can be differentiated from a typical FRET-based Ca2+ biosensor with ECFP and YPet (YC3.6 FRET Ca2+ biosensor, FRET-CFPYPet). A high-frequency ultrasound (HFU) with a carrier frequency of 150 MHz can target a subcellular region due to its tight focus smaller than 10 µm. Therefore, HFU offers a new single cell stimulations approach for FRET live cell imaging with precise spatial resolution and repeated stimulation for longitudinal studies. Furthermore, the single cell level intracellular delivery of a desired FRET-based biosensor into target cells using HFU enables us to perform dual FRET imaging of a cell pair. We show that a cell pair is defined by sequential intracellular delivery of the developed FRET-GFPRed and FRET-CFPYPet into two target cells using HFU. We demonstrate that a FRET-GFPRed exhibits consistent 10–15% FRET response under typical ionomycin stimulation as well as under a new stimulation strategy with HFU. 
    more » « less
  2. Abstract

    Therapeutic Low-intensity Pulsed Ultrasound (LIPUS) has been applied clinically for bone fracture healing and has been shown to stimulate extracellular matrix (ECM) metabolism in numerous soft tissues including intervertebral disc (IVD). In-vitro LIPUS testing systems have been developed and typically include polystyrene cell culture plates (CCP) placed directly on top of the ultrasound transducer in the acoustic near-field (NF). This configuration introduces several undesirable acoustic artifacts, making the establishment of dose-response relationships difficult, and is not relevant for targeting deep tissues such as the IVD, which may require far-field (FF) exposure from low frequency sources. The objective of this study was to design and validate an in-vitro LIPUS system for stimulating ECM synthesis in IVD-cells while mimicking attributes of a deep delivery system by delivering uniform, FF acoustic energy while minimizing reflections and standing waves within target wells, and unwanted temperature elevation within target samples. Acoustic field simulations and hydrophone measurements demonstrated that by directing LIPUS energy at 0.5, 1.0, or 1.5 MHz operating frequency, with an acoustic standoff in the FF (125–350 mm), at 6-well CCP targets including an alginate ring spacer, uniform intensity distributions can be delivered. A custom FF LIPUS system was fabricated and demonstrated reduced acoustic intensity field heterogeneity within CCP-wells by up to 93% compared to common NF configurations. When bovine IVD cells were exposed to LIPUS (1.5 MHz, 200 μs pulse, 1 kHz pulse frequency, and ISPTA = 120 mW cm−2) using the FF system, sample heating was minimal (+0.81 °C) and collagen content was increased by 2.6-fold compared to the control and was equivalent to BMP-7 growth factor treatment. The results of this study demonstrate that FF LIPUS exposure increases collagen content in IVD cells and suggest that LIPUS is a potential noninvasive therapeutic for stimulating repair of tissues deep within the body such as the IVD.

    more » « less
  3. Introduction— In response to external stress, cells alter their morphology, metabolic activity, and functions to mechanically adapt to the dynamic, local environment through cell allostasis. To explore mechanotransduction in cellular allostasis, we applied an integrated micromechanical system that combines an ‘ultrasound tweezers’-based mechanical stressor and a Förster resonance energy transfer (FRET)-based molecular force biosensor, termed “actinin-sstFRET,” to monitor in situ single-cell allostasis in response to transient stimulation in real time. Methods— The ultrasound tweezers utilize 1 Hz, 10-second transient ultrasound pulses to acoustically excite a lipid-encapsulated microbubble, which is bound to the cell membrane, and apply a pico- to nano-Newton range of forces to cells through an RGD-integrin linkage. The actinin-sstFRET molecular sensor, which engages the actin stress fibers in live cells, is used to map real-time actomyosin force dynamics over time. Then, the mechanosensitive behaviors were examined by profiling the dynamics in Ca2+ influx, actomyosin cytoskeleton (CSK) activity, and GTPase RhoA signaling to define a single-cell mechanical allostasis. Results—By subjecting a 1 Hz, 10-second physical stress, single vascular smooth muscle cells (VSMCs) were observed to remodeled themselves in a biphasic mechanical allostatic manner within 30 minutes that caused them to adjust their contractility and actomyosin activities. The cellular machinery that underscores the vital role of CSK equilibrium in cellular mechanical allostasis, includes Ca2+ influx, remodeling of actomyosin CSK and contraction, and GTPase RhoA signaling. Mechanical allostasis was observed to be compromised in VSMCs from patients with type II diabetes mellitus (T2DM), which could potentiate an allostatic maladaptation. Conclusions— By integrating tools that simultaneously permit localized mechanical perturbation and map actomyosin forces, we revealed distinct cellular mechanical allostasis profiles in our micromechanical system. Our findings of cell mechanical allostasis and maladaptation provide the potential for mechanophenotyping cells to reveal their pathogenic contexts and their biophysical mediators that underlie multi-etiological diseases such as diabetes, hypertension, or aging. 
    more » « less
  4. Abstract

    Emergent trends in the device development for neural prosthetics have focused on establishing stimulus localization, improving longevity through immune compatibility, reducing energy re-quirements, and embedding active control in the devices. Ultrasound stimulation can single-handedly address several of these challenges. Ultrasonic stimulus of neurons has been studied extensively from 100 kHz to 10 MHz, with high penetration but less localization. In this paper, a chip-scale device consisting of piezoelectric Aluminum Nitride ultrasonic transducers was engineered to deliver gigahertz (GHz) ultrasonic stimulus to the human neural cells. These devices provide a path towards complementary metal oxide semiconductor (CMOS) integration towards fully controllable neural devices. At GHz frequencies, ultrasonic wavelengths in water are a few microns and have an absorption depth of 10–20 µm. This confinement of energy can be used to control stimulation volume within a single neuron. This paper is the first proof-of-concept study to demonstrate that GHz ultrasound can stimulate neuronsin vitro. By utilizing optical calcium imaging, which records calcium ion flux indicating occurrence of an action potential, this paper demonstrates that an application of a nontoxic dosage of GHz ultrasonic waves$$(\ge 0.05\frac{W}{c{m}^{2}})$$(0.05Wcm2)caused an average normalized fluorescence intensity recordings >1.40 for the calcium transients. Electrical effects due to chip-scale ultrasound delivery was discounted as the sole mechanism in stimulation, with effects tested atα = 0.01 statistical significance amongst all intensities and con-trol groups. Ionic transients recorded optically were confirmed to be mediated by ion channels and experimental data suggests an insignificant thermal contributions to stimulation, with a predicted increase of 0.03oCfor$$1.2\frac{W}{c{m}^{2}}\cdot $$1.2Wcm2This paper paves the experimental framework to further explore chip-scale axon and neuron specific neural stimulation, with future applications in neural prosthetics, chip scale neural engineering, and extensions to different tissue and cell types.

    more » « less
  5. Abstract

    Fluorescenceresonanceenergytransfer (FRET) is a powerful tool to study macromolecular interactions such as protein–protein interactions (PPIs). Fluorescent protein (FP) fusions enable FRET‐based PPI analysis of signaling pathways and molecular structure in living cells. Despite FRET's importance in PPI studies, FRET has seen limited use in quantifying the affinities of PPIs in living cells. Here, we have explored the relationship between FRET efficiency and PPI affinity over a wide range when expressed from a single plasmid system inEscherichia coli.Using live‐cell microscopy and a set of 20 pairs of small interacting proteins, belonging to different structural folds and interaction affinities, we demonstrate that FRET efficiency can reliably measure the dissociation constant (KD) over a range of mMto nM. A 10‐fold increase in the interaction affinity results in 0.05 unit increase in FRET efficiency, providing sufficient resolution to quantify large affinity differences (> 10‐fold) using live‐cell FRET. This approach provides a rapid and simple strategy for assessment of PPI affinities over a wide range and will have utility for high‐throughput analysis of protein interactions.

    more » « less