skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wearable Textiles to Support Student STEM Learning and Attitudes. Journal of Science Education and Technology
Electronic textiles, especially those that can be worn (wearable textiles) are gaining traction within the P12 education community. The technology provides hands-on learning that is both exciting and personally relevant, especially for females, who have historically responded positively to aesthetics and textile design. A number of studies have examined the potential of wearable technologies in education, but they generally use small samples, mostly engage secondary school students and are carried out in either formal or informal settings. In contrast, this study utilized a large sample of elementary students and involved both in-and out-of-school learning contexts led by formal and informal educators. The present study used a quasi-experimental, pre-post design with two groups (treatment and control) to measure the impact of a wearable technology intervention on students’ (a) knowledge of circuitry, programming, and engineering design and (b) self-efficacy in making a wearable e-textile product. The three-level multilevel (i.e., children nested within teachers which were nested within schools) ANCOVAs were estimated for each outcome of interest (knowledge of circuitry, programming, engineering design, engineering self-efficacy, and programming self-efficacy). Results indicate that wearable technology’s integration of engineering, computing, and aesthetics promises to be an excellent interdisciplinary context to support students’ STEM learning and attitudes at the upper elementary level. However, differential results between males and females underscore the need to infuse gender-appropriate pedagogical practices to ensure that females develop the needed self-confidence to successfully complete tasks involving these two skill areas.  more » « less
Award ID(s):
1759000
PAR ID:
10321182
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of science education and technology
Volume:
28
Issue:
May
ISSN:
1059-0145
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Debugging, a recurrent practice while programming, can reveal significant information about student learning. Making electronic textile (e-textile) artifacts entails numerous opportunities for students to debug across circuitry, coding, crafting and designing domains. In this study, 69 high school students worked on a series of four different e-textiles projects over eight weeks as a part of their introductory computer science course. We analyzed debugging challenges and resolutions reported by students in their portfolios and interviews and found not only a wide range of computational concepts but also the development of specific computational practices such as being iterative and incremental in students’ debugging e-textiles projects. In the discussion, we address the need for more studies to recognize other computational practices such as abstraction and modularization, the potential of hybrid contexts for debugging, and the social aspects of debugging. 
    more » « less
  2. Debugging, a recurrent practice while programming, can reveal significant information about student learning. Making electronic textile (e-textile) artifacts entails numerous opportunities for students to debug across circuitry, coding, crafting and designing domains. In this study, 69 high school students worked on a series of four different e-textiles projects over eight weeks as a part of their introductory computer science course. We analyzed debugging challenges and resolutions reported by students in their portfolios and interviews and found not only a wide range of computational concepts but also the development of specific computational practices such as being iterative and incremental in students’ debugging e-textiles projects. In the discussion, we address the need for more studies to recognize other computational practices such as abstraction and modularization, the potential of hybrid contexts for debugging, and the social aspects of debugging. 
    more » « less
  3. null (Ed.)
    E-textiles, which embed circuitry into textile fabrics, blend art and creative expression with engineering, making it a popular choice for STEAM classrooms [6, 12]. Currently, e-textile development relies on tools intended for traditional embedded systems, which utilize printed circuit boards and insulated wires. These tools do not translate well to e-textiles, which utilize fabric and uninsulated conductive thread. This mismatch of tools and materials can lead to an overly complicated development process for novices. In particular, rapid prototyping tools for traditional embedded systems are poorly matched for e-textile prototyping. This paper presents the ThreadBoard, a tool that supports rapid prototyping of e-textile circuits. With rapid prototyping, students can test circuit designs and identify circuitry errors prior to their sewn project. We present the design process used to iteratively create the ThreadBoard’s layout, with the goal of improving its usability for e-textile creators. 
    more » « less
  4. This paper presents a case study of designing and running a Larp (live action role play)-based summer camp in which middle school-age girls create social wearables, toward building computational and design skills, interest, and self-efficacy. Our design draws upon prior evidence that edu-larps can address the identity gap for underrepresented groups in STEM. The focus on creation of social wearables built using E-textiles builds on existing larp practices that use costuming as a method for establishing identity as well as for providing a platform campers can use to enhance their dramatic spectacles. Our findings will be of interest to those working in the areas of informal learning of computation through Arduino and another small device programming, as well as those interested in the intersection of larp and technology design practices, and edu-larp. 
    more » « less
  5. null (Ed.)
    Though elementary educators recognize the importance of integrating engineering in their classrooms, many feel challenged and unprepared to teach engineering content. The absence of effective engineering instruction in teacher preparation programs leaves future educators unprepared for this challenge. Ed+gineering is an NSF-funded partnership between education and engineering aimed at increasing preservice teacher (PST) preparation, confidence, and intention to integrate engineering into their teaching. Ed+gineering partners education and engineering students in multidisciplinary teams within the context of their respective university courses. As part of their coursework, the teams plan and deliver culturally responsive engineering lessons to elementary school students under the guidance of one engineering and one education faculty. This paper investigates the impact of Ed+gineering on PSTs’ knowledge of engineering practices, engineering pedagogical knowledge, self-efficacy to integrate engineering, and beliefs about engineering integration. The impact of Ed+gineering on participating PSTs was assessed using three collaborations involving students in engineering and education during Fall 2019 and Spring 2020. Preliminary results suggest that the Ed+gineering partnership positively impacted engineering-pedagogical knowledge, knowledge of engineering practices, and self efficacy for integrating engineering. The specific magnitude of the impact and its implications are discussed. 
    more » « less