Many sign languages are bona fide natural languages with grammatical rules and lexicons hence can benefit from machine translation methods. Similarly, since sign language is a visual-spatial language, it can also benefit from computer vision methods for encoding it. With the advent of deep learning methods in recent years, significant advances have been made in natural language processing (specifically neural machine translation) and in computer vision methods (specifically image and video captioning). Researchers have therefore begun expanding these learning methods to sign language understanding. Sign language interpretation is especially challenging, because it involves a continuous visual-spatial modality where meaning is often derived based on context. The focus of this article, therefore, is to examine various deep learning–based methods for encoding sign language as inputs, and to analyze the efficacy of several machine translation methods, over three different sign language datasets. The goal is to determine which combinations are sufficiently robust for sign language translation without any gloss-based information. To understand the role of the different input features, we perform ablation studies over the model architectures (input features + neural translation models) for improved continuous sign language translation. These input features include body and finger joints, facial points, as well as vector representations/embeddings from convolutional neural networks. The machine translation models explored include several baseline sequence-to-sequence approaches, more complex and challenging networks using attention, reinforcement learning, and the transformer model. We implement the translation methods over multiple sign languages—German (GSL), American (ASL), and Chinese sign languages (CSL). From our analysis, the transformer model combined with input embeddings from ResNet50 or pose-based landmark features outperformed all the other sequence-to-sequence models by achieving higher BLEU2-BLEU4 scores when applied to the controlled and constrained GSL benchmark dataset. These combinations also showed significant promise on the other less controlled ASL and CSL datasets.
more »
« less
Dynamic Cross-Feature Fusion for American Sign Language Translation
While a significant amount of work has been done on the commonly used, tightly -constrained weather-based, German sign language (GSL) dataset, little has been done for continuous sign language translation (SLT) in more realistic settings, including American sign language (ASL) translation. Also, while CNN - based features have been consistently shown to work well on the GSL dataset, it is not clear whether such features will work as well in more realistic settings when there are more heterogeneous signers in non-uniform backgrounds. To this end, in this work, we introduce a new, realistic phrase-level ASL dataset (ASLing), and explore the role of different types of visual features (CNN embeddings, human body keypoints, and optical flow vectors) in translating it to spoken American English. We propose a novel Transformer-based, visual feature learning method for ASL translation. We demonstrate the explainability efficacy of our proposed learning methods by visualizing activation weights under various input conditions and discover that the body keypoints are consistently the most reliable set of input features. Using our model, we successfully transfer-learn from the larger GSL dataset to ASLing, resulting in significant BLEU score improvements. In summary, this work goes a long way in bringing together the AI resources required for automated ASL translation in unconstrained environments.
more »
« less
- Award ID(s):
- 1846076
- PAR ID:
- 10321199
- Date Published:
- Journal Name:
- 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The role of a sign interpreting agent is to bridge the communication gap between the hearing-only and Deaf or Hard of Hearing communities by translating both from sign language to text and from text to sign language. Until now, much of the AI work in automated sign language processing has focused primarily on sign language to text translation, which puts the advantage mainly on the side of hearing individuals. In this work, we describe advances in sign language processing based on transformer networks. Specifically, we introduce SignNet II, a sign language processing architecture, a promising step towards facilitating two-way sign language communication. It is comprised of sign-to-text and text-to-sign networks jointly trained using a dual learning mechanism. Furthermore, by exploiting the notion of sign similarity, a metric embedding learning process is introduced to enhance the text-to-sign translation performance. Using a bank of multi-feature transformers, we analyzed several input feature representations and discovered that keypoint-based pose features consistently performed well, irrespective of the quality of the input videos. We demonstrated that the two jointly trained networks outperformed their singly-trained counterparts, showing noteworthy enhancements in BLEU-1 - BLEU-4 scores when tested on the largest available German Sign Language (GSL) benchmark dataset.more » « less
-
We present a new approach for isolated sign recognition, which combines a spatial-temporal Graph Convolution Network (GCN) architecture for modeling human skeleton keypoints with late fusion of both the forward and backward video streams, and we explore the use of curriculum learning. We employ a type of curriculum learning that dynamically estimates, during training, the order of difficulty of each input video for sign recognition; this involves learning a new family of data parameters that are dynamically updated during training. The research makes use of a large combined video dataset for American Sign Language (ASL), including data from both the American Sign Language Lexicon Video Dataset (ASLLVD) and the Word-Level American Sign Language (WLASL) dataset, with modified gloss labeling of the latter—to ensure 1-1 correspondence between gloss labels and distinct sign productions, as well as consistency in gloss labeling across the two datasets. This is the first time that these two datasets have been used in combination for isolated sign recognition research. We also compare the sign recognition performance on several different subsets of the combined dataset, varying in, e.g., the minimum number of samples per sign (and therefore also in the total number of sign classes and video examples).more » « less
-
We present a new approach for isolated sign recognition, which combines a spatial-temporal Graph Convolution Network (GCN) architecture for modeling human skeleton keypoints with late fusion of both the forward and backward video streams, and we explore the use of curriculum learning. We employ a type of curriculum learning that dynamically estimates, during training, the order of difficulty of each input video for sign recognition; this involves learning a new family of data parameters that are dynamically updated during training. The research makes use of a large combined video dataset for American Sign Language (ASL), including data from both the American Sign Language Lexicon Video Dataset (ASLLVD) and the Word-Level American Sign Language (WLASL) dataset, with modified gloss labeling of the latter—to ensure 1-1 correspondence between gloss labels and distinct sign productions, as well as consistency in gloss labeling across the two datasets. This is the first time that these two datasets have been used in combination for isolated sign recognition research. We also compare the sign recognition performance on several different subsets of the combined dataset, varying in, e.g., the minimum number of samples per sign (and therefore also in the total number of sign classes and video examples).more » « less
-
In this paper, we propose a machine learning-based multi-stream framework to recognize American Sign Language (ASL) manual signs and nonmanual gestures (face and head movements) in real time from RGB-D videos. Our approach is based on 3D Convolutional Neural Networks (3D CNNs) by fusing the multi-modal features including hand gestures, facial expressions, and body poses from multiple channels (RGB, Depth, Motion, and Skeleton joints). To learn the overall temporal dynamics in a video, a proxy video is generated by selecting a subset of frames for each video which are then used to train the proposed 3D CNN model. We collected a new ASL dataset, ASL-100-RGBD, which contains 42 RGB-D videos captured by a Microsoft Kinect V2 camera. Each video consists of 100 ASL manual signs, along with RGB channel, Depth maps, Skeleton joints, Face features, and HD face. The dataset is fully annotated for each semantic region (i.e. the time duration of each sign that the human signer performs). Our proposed method achieves 92.88% accuracy for recognizing 100 ASL sign glosses in our newly collected ASL-100-RGBD dataset. The effectiveness of our framework for recognizing hand gestures from RGB-D videos is further demonstrated on a large-scale dataset, ChaLearn IsoGD, achieving the state-of-the-art results.more » « less
An official website of the United States government

