Genome Resource: Draft Genome of Fusarium avenaceum , Strain F156N33, Isolated from the Atmosphere Above Virginia and Annotated Based on RNA Sequencing Data
Fusarium avenaceum is a filamentous fungus commonly associated with plants and soil. It is a causal agent of Fusarium head blight (FHB) on maize and small-grain cereals and blights on other plant species, and is one of the very few fungal species known to have ice nucleation activity (i.e., it catalyzes ice formation). Here, we report the draft genome of the ice-nucleation-active F. avenaceum strain F156N33 isolated from the atmosphere above Virginia. The genome assembly is 41,175,306 bp long, consists of 214 contigs, and is predicted to encode 11,233 proteins, which were annotated using RNA-sequencing data obtained from the same strain.
more »
« less
- Award ID(s):
- 1754721
- PAR ID:
- 10321220
- Date Published:
- Journal Name:
- Plant Disease
- Volume:
- 106
- Issue:
- 2
- ISSN:
- 0191-2917
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Bruno, Vincent (Ed.)ABSTRACT Mortierella alpina is a filamentous fungus commonly associated with soil and is one of very few fungal species known to include strains with ice nucleation activity. Here, we report the draft genome sequence of the ice nucleation-active M. alpina strain LL118, isolated from aspen leaf litter collected in Alberta, Canada.more » « less
-
null (Ed.)The filamentous fungus Fusarium oxysporum is a soilborne pathogen of many cultivated species and an opportunistic pathogen of humans. F. oxysporum f. sp. matthiolae is one of three formae speciales that are pathogenic to crucifers, including Arabidopsis thaliana, a premier model for plant molecular biology and genetics. Here, we report a genome assembly of F. oxysporum f. sp. matthiolae strain PHW726, generated using a combination of PacBio and Illumina sequencing technologies. The genome assembly presented here should facilitate in-depth investigation of F. oxysporum–Arabidopsis interactions and shed light on the genetics of fungal pathogenesis and plant immunity.more » « less
-
Biological ice nucleation plays a key role in the survival of cold-adapted organisms. Several species of bacteria, fungi, and insects produce ice nucleators (INs) that enable ice formation at temperatures above −10 °C. Bacteria and fungi produce particularly potent INs that can promote water crystallization above −5 °C. Bacterial INs consist of extended protein units that aggregate to achieve superior functionality. Despite decades of research, the nature and identity of fungal INs remain elusive. Here, we combine ice nucleation measurements, physicochemical characterization, numerical modeling, and nucleation theory to shed light on the size and nature of the INs from the fungusFusarium acuminatum. We find ice-binding and ice-shaping activity ofFusariumIN, suggesting a potential connection between ice growth promotion and inhibition. We demonstrate that fungal INs are composed of small 5.3 kDa protein subunits that assemble into ice-nucleating complexes that can contain more than 100 subunits.FusariumINs retain high ice-nucleation activity even when only the ~12 kDa fraction of size-excluded proteins are initially present, suggesting robust pathways for their functional aggregation in cell-free aqueous environments. We conclude that the use of small proteins to build large assemblies is a common strategy among organisms to create potent biological INs.more » « less
-
The Fusarium solani species complex (FSSC) is a clade of environmentally ubiquitous fungi that includes plant, animal, and insect associates. Here, we report the draft genome sequence of the undescribed species FSSC 6 (isolate MYA-4552), housed in the gut of the wood-boring cerambycid beetle Anoplophora glabripennis .more » « less
An official website of the United States government

