skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Facial asymmetry tracks genetic diversity among Gorilla subspecies.
Mountain gorillas are particularly inbred compared to other gorillas and even the most inbred human populations. As mountain gorilla skeletal material accumulated during the 1970s, researchers noted their pronounced facial asymmetry and hypothesized that it reflects a population-wide chewing side preference. However, asymmetry has also been linked to environmental and genetic stress in experimental models. Here, we examine facial asymmetry in 114 crania from three Gorilla subspecies using 3D geometric morphometrics. We measure fluctuating asymmetry (FA), defined as random deviations from perfect symmetry, and population-specific patterns of directional asymmetry (DA). Mountain gorillas, with a current population size of about 1000 individuals, have the highest degree of facial FA (explaining 17% of total facial shape variation), followed by Grauer gorillas (9%) and western lowland gorillas (6%), despite the latter experiencing the greatest ecological and dietary variability. DA, while significant in all three taxa, explains relatively less shape variation than FA does. Facial asymmetry correlates neither with tooth wear asymmetry nor increases with age in a mountain gorilla subsample, undermining the hypothesis that facial asymmetry is driven by chewing side preference. An examination of temporal trends shows that stress-induced developmental instability has increased over the last 100 years in these endangered apes.  more » « less
Award ID(s):
1753651 0852866 0964944 1520221
PAR ID:
10321225
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings
Volume:
289
Issue:
1969
ISSN:
1471-2954
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Living in a rapidly changing environment can alter stress physiology at the population level, with negative impacts on health, reproductive rates, and mortality that may ultimately result in species decline. Small, isolated animal populations where genetic diversity is low are at particular risks, such as endangered Virunga mountain gorillas (Gorilla beringei beringei). Along with climate change‐associated environmental shifts that are affecting the entire population, subpopulations of the Virunga gorillas have recently experienced extreme changes in their social environment. As the growing population moves closer to the forest's carrying capacity, the gorillas are coping with rising population density, increased frequencies of interactions between social units, and changing habitat use (e.g., more overlapping home ranges and routine ranging at higher elevations). Using noninvasive monitoring of fecal glucocorticoid metabolites (FGM) on 115 habituated Virunga gorillas, we investigated how social and ecological variation are related to baseline FGM levels, to better understand the adaptive capacity of mountain gorillas and monitor potential physiological indicators of population decline risks. Generalized linear mixed models revealed elevated mean monthly baseline FGM levels in months with higher rainfall and higher mean maximum and minimum temperature, suggesting that Virunga gorillas might be sensitive to predicted warming and rainfall trends involving longer, warmer dry seasons and more concentrated and extreme rainfall occurrences. Exclusive use of smaller home range areas was linked to elevated baseline FGM levels, which may reflect reduced feeding efficiency and increased travel efforts to actively avoid neighboring groups. The potential for additive effects of stress‐inducing factors could have short‐ and long‐term impacts on the reproduction, health, and ultimately survival of the Virunga gorilla population. The ongoing effects of environmental changes and population dynamics must be closely monitored and used to develop effective long‐term conservation strategies that can help address these risk factors. 
    more » « less
  2. Abstract In humans and chimpanzees, most intraspecific killing occurs during coalitionary intergroup conflict. In the closely related genus Gorilla, such behavior has not been described. We report three cases of multi-male, multi-female wild mountain gorilla ( G. beringei ) groups attacking extra-group males. The behavior was strikingly similar to reports in chimpanzees, but was never observed in gorillas until after a demographic transition left ~25% of the population living in large social groups with multiple (3+) males. Resource competition is generally considered a motivator of great apes’ (including humans) violent intergroup conflict, but mountain gorillas are non-territorial herbivores with low feeding competition. While adult male gorillas have a defensible resource (i.e. females) and nursing/pregnant females are likely motivated to drive off potentially infanticidal intruders, the participation of others (e.g. juveniles, sub-adults, cycling females) is harder to explain. We speculate that the potential for severe group disruption when current alpha males are severely injured or killed may provide sufficient motivation when the costs to participants are low. These observations suggest that the gorilla population’s recent increase in multi-male groups facilitated the emergence of such behavior, and indicates social structure is a key predictor of coalitionary aggression even in the absence of meaningful resource stress. 
    more » « less
  3. Abstract ObjectivesSeveral theories have been proposed to explain the impact of ecological conditions on differences in life history variables within and between species. Here we compare female life history parameters of one western lowland gorilla population(Gorilla gorilla gorilla) and two mountain gorilla populations(Gorilla beringei beringei). Materials and MethodsWe compared the age of natal dispersal, age of first birth, interbirth interval, and birth rates using long‐term demographic datasets from Mbeli Bai (western gorillas), Bwindi Impenetrable National Park and the Virunga Massif (mountain gorillas). ResultsThe Mbeli western gorillas had the latest age at first birth, longest interbirth interval, and slowest surviving birth rate compared to the Virunga mountain gorillas. Bwindi mountain gorillas were intermediate in their life history patterns. DiscussionThese patterns are consistent with differences in feeding ecology across sites. However, it is not possible to determine the evolutionary mechanisms responsible for these differences, whether a consequence of genetic adaptation to fluctuating food supplies (“ecological risk aversion hypothesis”) or phenotypic plasticity in response to the abundance of food (“energy balance hypothesis”). Our results do not seem consistent with the extrinsic mortality risks at each site, but current conditions for mountain gorillas are unlikely to match their evolutionary history. Not all traits fell along the expected fast‐slow continuum, which illustrates that they can vary independently from each other (“modularity model”). Thus, the life history traits of each gorilla population may reflect a complex interplay of multiple ecological influences that are operating through both genetic adaptations and phenotypic plasticity. 
    more » « less
  4. The robust masticatory system of mountain gorillas is thought to have evolved for the comminution of tough vegetation, yet, compared to other primates, the toughness of the mountain gorilla diet is unremarkable. This may be a result of low plant toughness in the mountain gorilla environment or of mountain gorillas feeding selectively on low‐toughness foods. The goal of this paper is to determine how the toughness of the mountain gorilla diet varies across their habitat, which spans a large altitudinal range, and whether there is a relationship between toughness and food selection by mountain gorillas. We collected data on the following variables to determine whether, and if so how, they change with altitude: leaf toughness of two plant species consumed by mountain gorillas, at every 100 m increase in altitude (2,600–3,700 m); toughness of consumed foods comprising over 85% of the gorilla diet across five vegetation zones; and toughness of unconsumed/infrequently consumed plant parts of those foods. Although leaf toughness increased with altitude, the toughness of the gorilla diet remained similar. There was a negative relationship between toughness and consumption frequency, and toughness was a better predictor of consumption frequency than plant frequency, biomass, and density. Consumed plant parts were less tough than unconsumed/infrequently consumed parts and toughness of the latter increased with altitude. Although it is unclear whether gorillas select food based on toughness or use toughness as a sensory cue to impart other plant properties (e.g., macronutrients, chemicals), our results that gorillas maintain a consistent low‐toughness dietary profile across altitude, despite toughness increasing with altitude, suggest that the robust gorilla masticatory apparatus evolved for repetitive mastication of foods that are not high in toughness. 
    more » « less
  5. Abstract ObjectiveLinear enamel hypoplasia (LEH) is a condition marked by localized reductions in enamel thickness, resulting from growth disruptions during dental development. We use quantitative criteria to characterize the depth of LEH defects and “normal” perikymata in great apes. We test the hypothesis that mountain gorillas have shallow defects compared to other taxa, which may have led to their underestimation in previous studies. Materials and MethodsPrevious attempts to characterize LEH morphology quantitatively have been limited in sample size and scope. We generated digital elevation models using optical profilometry (Sensofar PLu Neox) and extracted 2D coordinates using ImageJ to quantify depths in canines from three great ape genera (N = 75 perikymata; 255 defects). ResultsAll defect depths fall outside the distribution of perikymata depths. Mountain gorilla defects are significantly shallower than those of other great ape taxa examined, including western lowland gorillas. Females have significantly deeper defects than males in all taxa. The deepest defect belongs to a wild‐captured zoo gorilla. Virunga mountain gorilla specimens collected by Dian Fossey exhibit deeper defects than those collected recently. DiscussionShallow defect morphology in mountain gorillas may have led to an underestimation of LEH prevalence in past studies. Defect depth is used as a proxy for insult severity, but depth might be influenced by inter‐ and intra‐specific variation in enamel growth. Future studies should test whether severe insults are associated with deeper defects, as might be the case with Haloko, a wild‐captured gorilla. Ongoing histologic studies incorporating associated behavioral records will test possible factors that underlie differences in defect morphology. 
    more » « less