skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Layered evolution of gene expression in “superfast” muscles for courtship
Identifying the molecular process of complex trait evolution is a core goal of biology. However, pinpointing the specific context and timing of trait-associated changes within the molecular evolutionary history of an organism remains an elusive goal. We study this topic by exploring the molecular basis of elaborate courtship evolution, which represents an extraordinary example of trait innovation. Within the behaviorally diverse radiation of Central and South American manakin birds, species from two separate lineages beat their wings together using specialized “superfast” muscles to generate a “snap” that helps attract mates. Here, we develop an empirical approach to analyze phylogenetic lineage-specific shifts in gene expression in the key snap-performing muscle and then integrate these findings with comparative transcriptomic sequence analysis. We find that rapid wing displays are associated with changes to a wide range of molecular processes that underlie extreme muscle performance, including changes to calcium trafficking, myocyte homeostasis and metabolism, and hormone action. We furthermore show that these changes occur gradually in a layered manner across the species history, wherein which ancestral genetic changes to many of these molecular systems are built upon by later species-specific shifts that likely finalized the process of display performance adaptation. Our study demonstrates the potential for combining phylogenetic modeling of tissue-specific gene expression shifts with phylogenetic analysis of lineage-specific sequence changes to reveal holistic evolutionary histories of complex traits.  more » « less
Award ID(s):
1947472
PAR ID:
10321276
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
14
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wittkopp, Patricia (Ed.)
    Abstract Genes involved in spermatogenesis tend to evolve rapidly, but we lack a clear understanding of how protein sequences and patterns of gene expression evolve across this complex developmental process. We used fluorescence-activated cell sorting (FACS) to generate expression data for early (meiotic) and late (postmeiotic) cell types across 13 inbred strains of mice (Mus) spanning ∼7 My of evolution. We used these comparative developmental data to investigate the evolution of lineage-specific expression, protein-coding sequences, and expression levels. We found increased lineage specificity and more rapid protein-coding and expression divergence during late spermatogenesis, suggesting that signatures of rapid testis molecular evolution are punctuated across sperm development. Despite strong overall developmental parallels in these components of molecular evolution, protein and expression divergences were only weakly correlated across genes. We detected more rapid protein evolution on the X chromosome relative to the autosomes, whereas X-linked gene expression tended to be relatively more conserved likely reflecting chromosome-specific regulatory constraints. Using allele-specific FACS expression data from crosses between four strains, we found that the relative contributions of different regulatory mechanisms also differed between cell types. Genes showing cis-regulatory changes were more common late in spermatogenesis, and tended to be associated with larger differences in expression levels and greater expression divergence between species. In contrast, genes with trans-acting changes were more common early and tended to be more conserved across species. Our findings advance understanding of gene evolution across spermatogenesis and underscore the fundamental importance of developmental context in molecular evolutionary studies. 
    more » « less
  2. Braasch, Ingo (Ed.)
    Gene duplication is an important process of molecular evolutionary change, though identifying these events and their functional implications remains challenging. Studies on gene duplication more often focus on the presence of paralogous genes within the genomes and less frequently explore shifts in expression. We investigated the evolutionary history of calsequestrin (CASQ), a crucial calcium-binding protein in the junctional sarcoplasmic reticulum of muscle tissues. CASQ exists in jawed vertebrates as subfunctionalized paralogs CASQ1 and CASQ2 expressed primarily in skeletal and cardiac muscles, respectively. We used an enhanced sequence dataset to support initial duplication of CASQl in a jawed fish ancestor prior to the divergence of cartilaginous fishes. Surprisingly, we find CASQ2 is the predominant skeletal muscle paralog in birds, while CASQ1 is either absent or effectively nonfunctional. Changes in the amino acid composition and electronegativity of avian CASQ2 suggest enhancement to calcium-binding properties that preceded the loss of CASQ1. We identify this phenomenon as CASQ2 “synfunctionalization,” where one paralog functionally replaces another. While additional studies are needed to fully understand the dynamics of CASQ1 and CASQ2 in bird muscles, the long and consistent history of CASQ subfunctions outside of birds indicate a substantial evolutionary pressure on calcium-cycling processes in muscle tissues, likely connected to increased avian cardiovascular and metabolic demands. Our study provides an important insight into the molecular evolution of birds and shows how gene expression patterns can be comparatively studied across phylum-scale deep time to reveal key evolutionary events 
    more » « less
  3. Phylogenetic comparative methods have long been a mainstay of evolutionary biology, allowing for the study of trait evolution across species while accounting for their common ancestry. These analyses typically assume a single, bifurcating phylogenetic tree describing the shared history among species. However, modern phylogenomic analyses have shown that genomes are often composed of mosaic histories that can disagree both with the species tree and with each other—so-called discordant gene trees. These gene trees describe shared histories that are not captured by the species tree, and therefore that are unaccounted for in classic comparative approaches. The application of standard comparative methods to species histories containing discordance leads to incorrect inferences about the timing, direction, and rate of evolution. Here, we develop two approaches for incorporating gene tree histories into comparative methods: one that constructs an updated phylogenetic variance–covariance matrix from gene trees, and another that applies Felsenstein's pruning algorithm over a set of gene trees to calculate trait histories and likelihoods. Using simulation, we demonstrate that our approaches generate much more accurate estimates of tree-wide rates of trait evolution than standard methods. We apply our methods to two clades of the wild tomato genusSolanumwith varying rates of discordance, demonstrating the contribution of gene tree discordance to variation in a set of floral traits. Our approaches have the potential to be applied to a broad range of classic inference problems in phylogenetics, including ancestral state reconstruction and the inference of lineage-specific rate shifts. 
    more » « less
  4. Nielsen, Rasmus (Ed.)
    Abstract An important goal of evolutionary genomics is to identify genomic regions whose substitution rates differ among lineages. For example, genomic regions experiencing accelerated molecular evolution in some lineages may provide insight into links between genotype and phenotype. Several comparative genomics methods have been developed to identify genomic accelerations between species, including a Bayesian method called PhyloAcc, which models shifts in substitution rate in multiple target lineages on a phylogeny. However, few methods consider the possibility of discordance between the trees of individual loci and the species tree due to incomplete lineage sorting, which might cause false positives. Here, we present PhyloAcc-GT, which extends PhyloAcc by modeling gene tree heterogeneity. Given a species tree, we adopt the multispecies coalescent model as the prior distribution of gene trees, use Markov chain Monte Carlo (MCMC) for inference, and design novel MCMC moves to sample gene trees efficiently. Through extensive simulations, we show that PhyloAcc-GT outperforms PhyloAcc and other methods in identifying target lineage-specific accelerations and detecting complex patterns of rate shifts, and is robust to specification of population size parameters. PhyloAcc-GT is usually more conservative than PhyloAcc in calling convergent rate shifts because it identifies more accelerations on ancestral than on terminal branches. We apply PhyloAcc-GT to two examples of convergent evolution: flightlessness in ratites and marine mammal adaptations, and show that PhyloAcc-GT is a robust tool to identify shifts in substitution rate associated with specific target lineages while accounting for incomplete lineage sorting. 
    more » « less
  5. Nowick, Katja (Ed.)
    Despite the increasing abundance of whole transcriptome data, few methods are available to analyze global gene expression across phylogenies. Here, we present a new software package (CAGEE) for inferring patterns of increases and decreases in gene expression across a phylogenetic tree, as well as the rate at which these changes occur. In contrast to previous methods that treat each gene independently, CAGEE can calculate genome-wide rates of gene expression, along with ancestral states for each gene. The statistical approach developed here makes it possible to infer lineage-specific shifts in rates of evolution across the genome, in addition to possible differences in rates among multiple tissues sampled from the same species. We demonstrate the accuracy and robustness of our method on simulated data, and apply it to a data set of ovule gene expression collected from multiple self-compatible and self-incompatible species in the genus Solanum to test hypotheses about the evolutionary forces acting during mating system shifts. These comparisons allow us to highlight the power of CAGEE, demonstrating its utility for use in any empirical system and for the analysis of most morphological traits. Our software is available at https://github.com/hahnlab/CAGEE/. 
    more » « less