skip to main content


Title: Sinorhizobium medicae WSM419 Genes That Improve Symbiosis between Sinorhizobium meliloti Rm1021 and Medicago truncatula Jemalong A17 and in Other Symbiosis Systems
ABSTRACT Some soil bacteria, called rhizobia, can interact symbiotically with legumes, in which they form nodules on the plant roots, where they can reduce atmospheric dinitrogen to ammonia, a form of nitrogen that can be used by growing plants. Rhizobium-plant combinations can differ in how successful this symbiosis is: for example, Sinorhizobium meliloti Rm1021 forms a relatively ineffective symbiosis with Medicago truncatula Jemalong A17, but Sinorhizobium medicae WSM419 is able to support more vigorous plant growth. Using proteomic data from free-living and symbiotic S. medicae WSM419, we previously identified a subset of proteins that were not closely related to any S. meliloti Rm1021 proteins and speculated that adding one or more of these proteins to S. meliloti Rm1021 would increase its effectiveness on M. truncatula A17. Three genes, Smed_3503, Smed_5985, and Smed_6456, were cloned into S. meliloti Rm1021 downstream of the E. coli lacZ promoter. Strains with these genes increased nodulation and improved plant growth, individually and in combination with one another. Smed_3503, renamed iseA ( i ncreased s ymbiotic e ffectiveness), had the largest impact, increasing M. truncatula biomass by 61%. iseA homologs were present in all currently sequenced S. medicae strains but were infrequent in other Sinorhizobium isolates. Rhizobium leguminosarum bv. viciae 3841 containing iseA led to more nodules on pea and lentil. Split-root experiments with M. truncatula A17 indicated that S. meliloti Rm1021 carrying the S. medicae iseA is less sensitive to plant-induced resistance to rhizobial infection, suggesting an interaction with the plant’s regulation of nodule formation. IMPORTANCE Legume symbiosis with rhizobia is highly specific. Rhizobia that can nodulate and fix nitrogen on one legume species are often unable to associate with a different species. The interaction can be more subtle. Symbiotically enhanced growth of the host plant can differ substantially when nodules are formed by different rhizobial isolates of a species, much like disease severity can differ when conspecific isolates of pathogenic bacteria infect different cultivars. Much is known about bacterial genes essential for a productive symbiosis, but less is understood about genes that marginally improve performance. We used a proteomic strategy to identify Sinorhizobium genes that contribute to plant growth differences that are seen when two different strains nodulate M. truncatula A17. These genes could also alter the symbiosis between R. leguminosarum bv. viciae 3841 and pea or lentil, suggesting that this approach identifies new genes that may more generally contribute to symbiotic productivity.  more » « less
Award ID(s):
1645590
NSF-PAR ID:
10321288
Author(s) / Creator(s):
; ; ;
Editor(s):
Stabb, Eric V.
Date Published:
Journal Name:
Applied and Environmental Microbiology
Volume:
87
Issue:
15
ISSN:
0099-2240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Rhizobial lipochitooligosaccharidic Nod factors (NFs), specified bynodgenes, are the primary determinants of host specificity in the legume–Rhizobia symbiosis.

    We examined the nodulation ability ofMedicago truncatulacv Jemalong A17 andM. truncatulassp.tricyclaR108 with theSinorhizobium meliloti nodF/nodLmutant, which produces modified NFs. We then applied genetic and functional approaches to study the genetic basis and mechanism of nodulation of R108 by this mutant.

    We show that thenodF/nodLmutant can nodulate R108 but not A17. Using genomics and reverse genetics, we identified a newly evolved, chimeric LysM receptor‐like kinase gene in R108,LYK2bis, which is responsible for the phenotype and can allow A17 to gain nodulation with thenodF/nodLmutant. We found thatLYK2bisis involved in nodulation by mutants producing nonO‐acetylated NFs and interacts with the key receptor protein NFP. Many, but not all, naturalS. melilotiandS. medicaestrains tested requireLYK2bisfor efficient nodulation of R108.

    Our findings reveal that a newly evolved gene in R108,LYK2bis, extends nodulation specificity to mutants producing nonO‐acetylated NFs and is important for nodulation by many naturalSinorhizobia. Evolution of this gene may present an adaptive advantage to allow nodulation by a greater variety of strains.

     
    more » « less
  2. Premise

    Polyploidy is a major genetic driver of ecological and evolutionary processes in plants, yet its effects on plant interactions with mutualistic microbes remain unresolved. The legume–rhizobium symbiosis regulates global nutrient cycles and plays a role in the diversification of legume species. In this mutualism, rhizobia bacteria fix nitrogen in exchange for carbon provided by legume hosts. This exchange occurs inside root nodules, which house bacterial cells and represent the interface of legume–rhizobium interactions. Although polyploidy may directly impact the legume–rhizobium mutualism, no studies have explored how it alters the internal structure of nodules.

    Methods

    We created synthetic autotetraploids usingMedicago sativasubsp.caerulea. Neotetraploid plants and their diploid progenitors were singly inoculated with two strains of rhizobia,Sinorhizobium melilotiandS. medicae. Confocal microscopy was used to quantify internal traits of nodules produced by diploid and neotetraploid plants.

    Results

    Autotetraploid plants produced larger nodules with larger nitrogen fixation zones than diploids for both strains of rhizobia, although the significance of these differences was limited by power. NeotetraploidM. sativasubsp.caeruleaplants also produced symbiosomes that were significantly larger, nearly twice the size, than those present in diploids.

    Conclusions

    This study sheds light on how polyploidy directly affects a plant–bacterium mutualism and uncovers novel mechanisms. Changes in plant–microbe interactions that directly result from polyploidy likely contribute to the increased ability of polyploid legumes to establish in diverse environments.

     
    more » « less
  3. Abstract

    In the legume‐rhizobia mutualism, the benefit each partner derives from the other depends on the genetic identity of both host and rhizobial symbiont. To gain insight into the extent of genome × genome interactions on hosts at the molecular level and to identify potential mechanisms responsible for the variation, we examined host gene expression within nodules (the plant organ where the symbiosis occurs) of four genotypes ofMedicago truncatulagrown with eitherEnsifer melilotiorE. medicaesymbionts. These host × symbiont combinations show significant variation in nodule and biomass phenotypes. Likewise, combinations differ in their transcriptomes: host, symbiont and host × symbiont affected the expression of 70%, 27% and 21%, respectively, of the approximately 27,000 host genes expressed in nodules. Genes with the highest levels of expression often varied between hosts and/or symbiont strain and include leghemoglobins that modulate oxygen availability and hundreds of Nodule Cysteine‐Rich (NCR) peptides involved in symbiont differentiation and viability in nodules. Genes with host × symbiont‐dependent expression were enriched for functions related to resource exchange between partners (sulphate/iron/amino acid transport and dicarboxylate/amino acid synthesis). These enrichments suggest mechanisms for host control of the currencies of the mutualism. The transcriptome ofM. truncatulaaccessionHM101 (A17), the reference genome used for most molecular research, was less affected by symbiont identity than the other hosts. These findings underscore the importance of assessing the molecular basis of variation in ecologically important traits, particularly those involved in biotic interactions, in multiple genetic contexts.

     
    more » « less
  4. Summary

    The formation of nitrogen‐fixing nodules on legume hosts is a finely tuned process involving many components of both symbiotic partners. Production of the exopolysaccharide succinoglycan by the nitrogen‐fixing bacteriumSinorhizobium meliloti1021 is needed for an effective symbiosis withMedicagospp., and the succinyl modification to this polysaccharide is critical. However, it is not known when succinoglycan intervenes in the symbiotic process, and it is not known whether the plant lysin‐motif receptor‐like kinase MtLYK10 intervenes in recognition of succinoglycan, as might be inferred from work on theLotus japonicusMtLYK10 ortholog, LjEPR3. We studied the symbiotic infection phenotypes ofS. melilotimutants deficient in succinoglycan production or producing modified succinoglycan, in wild‐typeMedicago truncatulaplants and inMtlyk10mutant plants. On wild‐type plants,S. melilotistrains producing no succinoglycan or only unsuccinylated succinoglycan still induced nodule primordia and epidermal infections, but further progression of the symbiotic process was blocked. TheseS. melilotimutants induced a more severe infection phenotype onMtlyk10mutant plants. Nodulation by succinoglycan‐defective strains was achieved byin transrescue with a Nod factor‐deficientS. melilotimutant. While the Nod factor‐deficient strain was always more abundant inside nodules, the succinoglycan‐deficient strain was more efficient than the strain producing only unsuccinylated succinoglycan. Together, these data show that succinylated succinoglycan is essential for infection thread formation inM. truncatula, and that MtLYK10 plays an important, but different role in this symbiotic process. These data also suggest that succinoglycan is more important than Nod factors for bacterial survival inside nodules.

     
    more » « less
  5. Plants have evolved the ability to distinguish between symbiotic and pathogenic microbial signals. However, potentially cooperative plant–microbe interactions often abort due to incompatible signaling. The Nodulation Specificity 1 ( NS1 ) locus in the legume Medicago truncatula blocks tissue invasion and root nodule induction by many strains of the nitrogen-fixing symbiont Sinorhizobium meliloti . Controlling this strain-specific nodulation blockade are two genes at the NS1 locus, designated NS1a and NS1b , which encode malectin-like leucine-rich repeat receptor kinases. Expression of NS1a and NS1b is induced upon inoculation by both compatible and incompatible Sinorhizobium strains and is dependent on host perception of bacterial nodulation (Nod) factors. Both presence/absence and sequence polymorphisms of the paired receptors contribute to the evolution and functional diversification of the NS1 locus. A bacterial gene, designated rns1 , is required for activation of NS1 -mediated nodulation restriction. rns1 encodes a type I-secreted protein and is present in approximately 50% of the nearly 250 sequenced S. meliloti strains but not found in over 60 sequenced strains from the closely related species Sinorhizobium medicae . S. meliloti strains lacking functional rns1 are able to evade NS1 -mediated nodulation blockade. 
    more » « less