skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The NANOGrav 12.5 yr Data Set: Polarimetry and Faraday Rotation Measures from Observations of Millisecond Pulsars with the Green Bank Telescope
Abstract In this work, we present polarization profiles for 23 millisecond pulsars observed at 820 and 1500 MHz with the Green Bank Telescope as part of the NANOGrav pulsar timing array. We calibrate the data using Mueller matrix solutions calculated from observations of PSRs B1929+10 and J1022+1001. We discuss the polarization profiles, which can be used to constrain pulsar emission geometry, and present both the first published radio polarization profiles for nine pulsars and the discovery of very low-intensity average profile components (“microcomponents”) in four pulsars. We obtain the Faraday rotation measures for each pulsar and use them to calculate the Galactic magnetic field parallel to the line of sight for different lines of sight through the interstellar medium. We fit for linear and sinusoidal trends in time in the dispersion measure and Galactic magnetic field and detect magnetic field variations with a period of 1 yr in some pulsars, but overall find that the variations in these parameters are more consistent with a stochastic origin.  more » « less
Award ID(s):
2020265
PAR ID:
10321297
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
926
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Using the first station of the Long Wavelength Array (LWA1), we examine polarized pulsar emission between 25 and 88 MHz. Polarized light from pulsars undergoes Faraday rotation as it passes through the magnetized interstellar medium. Observations from low-frequency telescopes are ideal for obtaining precise rotation measures (RMs) because the effect of Faraday rotation is proportional to the square of the observing wavelength. With these RMs, we obtained polarized pulse profiles to see how polarization changes in the 25–88 MHz range. The RMs were also used to derive values for the electron-density-weighted average Galactic magnetic field along the line of sight. We present RMs and polarization profiles of 15 pulsars acquired using data from LWA1. These results provide new insight into low-frequency polarization characteristics and pulsar emission heights, and complement measurements at higher frequencies. 
    more » « less
  2. Abstract Terzan 5 is a rich globular cluster within the galactic bulge containing 39 known millisecond pulsars, the largest known population of any globular cluster. These faint pulsars do not have sufficient signal-to-noise ratio (S/N) to measure reliable flux density or polarization information from individual observations in general. We combined over 5.2 days of archival data, at 1500 and 2000 MHz, taken with the Green Bank Telescope over the past 12 years. We created high-S/N profiles for 32 of the pulsars and determined precise rotation measures (RMs) for 28. We used the RMs, pulsar positions, and dispersion measures to map the projected parallel component of the Galactic magnetic field toward the cluster. The 〈B∣∣〉 shows a rough gradient of ∼6 nG arcsec−1(∼160 nG pc−1) or, fractionally, a change of ∼20% in the R.A. direction across the cluster, implying Galactic magnetic field variability at sub-parsec scales. We also measured average flux densitiesSνfor the pulsars, ranging from ∼10μJy to ∼2 mJy, and an average spectral indexα= −1.35, whereSν∝να. This spectral index is flatter than most known pulsars, likely a selection effect due to the high frequencies used in pulsar searches to mitigate dispersion and scattering. We used flux densities from each observation to constrain the scintillation properties toward the cluster, finding strong refractive modulation on timescales of months. The inferred pulsar luminosity function is roughly power law, with slope ( d log N ) / ( d log L ) = 1 at the high-luminosity end. At the low-luminosity end, there are incompleteness effects, implying that Terzan 5 contains many more pulsars. 
    more » « less
  3. Abstract We develop a new method for studying the Galactic magnetic field along the spiral arms using pulsar Faraday rotation measures (RMs). Our new technique accounts for the dot-product nature of Faraday rotation and also splits the associated path integral into segments corresponding to particular zones along the line of sight. We apply this geometrically corrected, arm-by-arm technique to the low-latitude portion of a recently published set of Arecibo Faraday RMs for 313 pulsars, along with previously obtained RMs in the same regions. We find disparities >1σbetween the magnitude of the field above and below the plane in the Local Arm, Sagittarius Arm, Sagittarius-to-Scutum Interarm, Scutum Arm, and Perseus Arm. We find evidence for a single field reversal near the Local Arm–Sagittarius Arm boundary. Interestingly, our results suggest that this field reversal is dependent on latitude, occurring inside the Sagittarius Arm at negative Galactic latitudes and at the Local Arm–Sagittarius Arm boundary at positive Galactic latitudes. We discuss all of our results in the context of different models and other observational Galactic magnetic field analyses. 
    more » « less
  4. Abstract Pulsar timing array experiments have recently uncovered evidence for a nanohertz gravitational wave background by precisely timing an ensemble of millisecond pulsars. The next significant milestones for these experiments include characterizing the detected background with greater precision, identifying its source(s), and detecting continuous gravitational waves from individual supermassive black hole binaries. To achieve these objectives, generating accurate and precise times of arrival of pulses from pulsar observations is crucial. Incorrect polarization calibration of the observed pulsar profiles may introduce errors in the measured times of arrival. Further, previous studies have demonstrated that robust polarization calibration of pulsar profiles can reduce noise in the pulsar timing data and improve timing solutions. In this paper, we investigate and compare the impact of different polarization calibration methods on pulsar timing precision using three distinct calibration techniques: the Ideal Feed Assumption (IFA), Measurement Equation Modeling (MEM), and Measurement Equation Template Matching (METM). Three NANOGrav pulsars—PSRs J1643−1224, J1744−1134, and J1909−3744—observed with the 800 MHz and 1.5 GHz receivers at the Green Bank Telescope (GBT) are utilized for our analysis. Our findings reveal that all three calibration methods enhance timing precision compared to scenarios where no polarization calibration is performed. Additionally, among the three calibration methods, the IFA approach generally provides the best results for timing analysis of pulsars observed with the GBT receiver system. We attribute the comparatively poorer performance of the MEM and METM methods to potential instabilities in the reference noise diode coupled to the receiver and temporal variations in the profile of the reference pulsar, respectively. 
    more » « less
  5. Abstract We report on a full-polarization analysis of the first 25 as yet nonrepeating fast radio bursts (FRBs) detected at 1.4 GHz by the 110-antenna Deep Synoptic Array (DSA-110) during commissioning observations. We present details of the data-reduction, calibration, and analysis procedures developed for this novel instrument. Faraday rotation measures (RMs) are searched between ±106rad m−2and detected for 20 FRBs, with magnitudes ranging from 4 to 4670 rad m−2. Fifteen out of 25 FRBs are consistent with 100% polarization, 10 of which have high (≥70%) linear-polarization fractions and two of which have high (≥30%) circular-polarization fractions. Our results disfavor multipath RM scattering as a dominant depolarization mechanism. Polarization-state and possible RM variations are observed in the four FRBs with multiple subcomponents. We combine the DSA-110 sample with polarimetry of previously published FRBs, and compare the polarization properties of FRB subpopulations and FRBs with Galactic pulsars. Although FRB polarization fractions are typically higher than those of Galactic pulsars, and cover a wider range than those of pulsar single pulses, they resemble those of the youngest (characteristic ages <105yr) pulsars. Our results support a scenario wherein FRB emission is intrinsically highly linearly polarized, and propagation effects can result in conversion to circular polarization and depolarization. Young pulsar emission and magnetospheric propagation geometries may form a useful analogy for the origin of FRB polarization. 
    more » « less