skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Radio Pulse Profiles and Polarization of the Terzan 5 Pulsars
Abstract

Terzan 5 is a rich globular cluster within the galactic bulge containing 39 known millisecond pulsars, the largest known population of any globular cluster. These faint pulsars do not have sufficient signal-to-noise ratio (S/N) to measure reliable flux density or polarization information from individual observations in general. We combined over 5.2 days of archival data, at 1500 and 2000 MHz, taken with the Green Bank Telescope over the past 12 years. We created high-S/N profiles for 32 of the pulsars and determined precise rotation measures (RMs) for 28. We used the RMs, pulsar positions, and dispersion measures to map the projected parallel component of the Galactic magnetic field toward the cluster. The 〈B∣∣〉 shows a rough gradient of ∼6 nG arcsec−1(∼160 nG pc−1) or, fractionally, a change of ∼20% in the R.A. direction across the cluster, implying Galactic magnetic field variability at sub-parsec scales. We also measured average flux densitiesSνfor the pulsars, ranging from ∼10μJy to ∼2 mJy, and an average spectral indexα= −1.35, whereSννα. This spectral index is flatter than most known pulsars, likely a selection effect due to the high frequencies used in pulsar searches to mitigate dispersion and scattering. We used flux densities from each observation to constrain the scintillation properties toward the cluster, finding strong refractive modulation on timescales of months. The inferred pulsar luminosity function is roughly power law, with slope(dlogN)/(dlogL)=1at the high-luminosity end. At the low-luminosity end, there are incompleteness effects, implying that Terzan 5 contains many more pulsars.

 
more » « less
Award ID(s):
2020265
NSF-PAR ID:
10384483
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
941
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 22
Size(s):
["Article No. 22"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope atz= 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy (K0=189+11keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rateṀcool=10060+90Myr−1. From optical spectroscopy and photometry around the [Oii] emission line, we estimate that the BCG star formation rate isSFR[OII]=1.70.6+1.0Myr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet powerPcav=3.21.3+2.1×1044erg s−1, which is consistent with the X-ray cooling luminosity (Lcool=1.90.5+0.2×1044erg s−1withinrcool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters.

     
    more » « less
  2. Abstract

    The repeating fast radio burst FRB 20190520B is localized to a galaxy atz= 0.241, much closer than expected given its dispersion measure DM = 1205 ± 4 pc cm−3. Here we assess implications of the large DM and scattering observed from FRB 20190520B for the host galaxy’s plasma properties. A sample of 75 bursts detected with the Five-hundred-meter Aperture Spherical radio Telescope shows scattering on two scales: a mean temporal delayτ(1.41 GHz) = 10.9 ± 1.5 ms, which is attributed to the host galaxy, and a mean scintillation bandwidth Δνd(1.41 GHz) = 0.21 ± 0.01 MHz, which is attributed to the Milky Way. Balmer line measurements for the host imply an Hαemission measure (galaxy frame) EMs= 620 pc cm−6× (T/104K)0.9, implying DMHαof order the value inferred from the FRB DM budget,DMh=1121138+89pc cm−3for plasma temperatures greater than the typical value 104K. Combiningτand DMhyields a nominal constraint on the scattering amplification from the host galaxyF˜G=1.50.3+0.8(pc2km)1/3, whereF˜describes turbulent density fluctuations andGrepresents the geometric leverage to scattering that depends on the location of the scattering material. For a two-screen scattering geometry whereτarises from the host galaxy and Δνdfrom the Milky Way, the implied distance between the FRB source and dominant scattering material is ≲100 pc. The host galaxy scattering and DM contributions support a novel technique for estimating FRB redshifts using theτ–DM relation, and are consistent with previous findings that scattering of localized FRBs is largely dominated by plasma within host galaxies and the Milky Way.

     
    more » « less
  3. Abstract

    We apply for the first time orbit-averaged Monte Carlo star cluster simulations to study tidal tail and stellar stream formation from globular clusters (GCs), assuming a circular orbit in a time-dependent spherical Galactic potential. Treating energetically unbound bodies—potential escapers (PEs)—as collisionless enables this fast but spherically symmetric method to capture asymmetric extratidal phenomena with exquisite detail. Reproducing stream features such as epicyclic overdensities, we show howreturning tidal tailscan form after the stream fully circumnavigates the Galaxy, enhancing the stream's velocity dispersion by several kilometers per second in our ideal case. While a truly clumpy, asymmetric, and evolving Galactic potential would greatly diffuse such tails, they warrant scrutiny as potentially excellent constraints on the Galaxy’s history and substructure. Reexamining the escape timescale Δtof PEs, we find new behavior related to chaotic scattering in the three-body problem; the Δtdistribution features sharp plateaus corresponding to distinct locally smooth patches of the chaotic saddle separating the phase-space basins of escape. We study for the first time Δtin an evolving cluster, finding thatΔt(EJ0.1,EJ0.4)for PEs with (low, high) Jacobi energyEJ, flatter than for a static cluster (EJ2). Accounting for cluster mass loss and internal evolution lowers the median Δtfrom ∼10 Gyr to ≲100 Myr. We finally outline potential improvements to escape in the Monte Carlo method intended to enable the first large grids of tidal tail/stellar stream models from full GC simulations and detailed comparison to stream observations.

     
    more » « less
  4. Abstract

    Faraday rotation measures (RMs) of fast radio bursts (FRBs) offer the prospect of directly measuring extragalactic magnetic fields. We present an analysis of the RMs of 10 as yet nonrepeating FRBs detected and localized to host galaxies with robust redshift measurements by the 63-antenna prototype of the Deep Synoptic Array (DSA-110). We combine this sample with published RMs of 15 localized FRBs, nine of which are repeating sources. For each FRB in the combined sample, we estimate the host-galaxy dispersion measure (DM) contributions and extragalactic RM. We find compelling evidence that the extragalactic components of FRB RMs are often dominated by contributions from the host-galaxy interstellar medium (ISM). Specifically, we find that both repeating and as yet nonrepeating FRBs show a correlation between the host DM and host RM in the rest frame, and we find an anticorrelation between extragalactic RM (in the observer frame) and redshift for nonrepeaters, as expected if the magnetized plasma is in the host galaxy. Important exceptions to the ISM origin include a dense, magnetized circumburst medium in some repeating FRBs, and the intracluster medium of host or intervening galaxy clusters. We find that the estimated ISM magnetic-field strengths,B¯, are characteristically ∼1–2μG larger than those inferred from Galactic radio pulsars. This suggests either increased ISM magnetization in FRB hosts in comparison with the Milky Way, or that FRBs preferentially reside in regions of increased magnetic-field strength within their hosts.

     
    more » « less
  5. Abstract

    We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution (R∼ 11,000) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of 〈[Fe/H]〉 = −2.62 ± 0.11 dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of −143.5 ± 1.2 km s−1and a velocity dispersion ofσrv=2.50.8+1.3km s−1, which results in a dynamical mass ofM1/2(rh)=84+12×105Mand a mass-to-light ratio ofM/LV=440250+650M/L. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L> 80M/L). However, we do not resolve a metallicity dispersion (σ[Fe/H]< 0.44 dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass–metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in line with its orbital parameters. Intriguingly, Grus I has among the lowest central densities (ρ1/23.52.1+5.7×107Mkpc−3) of the UFDs that are not known to be tidally disrupting. Models of the formation and evolution of UFDs will need to explain the diversity of these central densities, in addition to any diversity in the outer regions of these relic galaxies.

     
    more » « less