Abstract. As cloud-based web services get more and more capable, available, and powerful (CAP), data science and engineering is pulled toward the frontline because DATA means almost anything-as-a-service (XaaS) via Digital Archiving and Transformed Analytics. In general, a web service (via a website) serves customers with web documents in HTML, JSON, XML, and multimedia via interactive (request) and responsive (reply) ways for specific domain problem solving over the Internet. In particular, a web service is deeply involved with UI & UX (user interface and user experience) plus considerate regulations on QoS (Quality of Service) as well, which refers to both information synthesis and security, namely availability and reliability for providential web services. This paper, based on the novel wiseCIO as a Platform-as-a-Service (PaaS), presents digital archiving 3 and transformed analytics (DATA) via machine learning, one of the most practical aspects of artificial intelligence. Machine learning is the science of data analysis that automates analytical model building and online analytical processing (OLAP) that enables computers to act without being explicitly programmed through CTMP. Computational thinking combined with manageable processing is 4 thoroughly discussed and utilized for FAST solutions in a feasible, analytical, scalable and testable approach. DATA is central to information synthesis and analytics (ISA), and digitized archives plays a key role in transformed analytics on intelligence for business, education and entertainment (iBEE). Case studies as applicable examples are discussed over broad fields where archival digitization is required for analytical transformation via machine learning, such as scalable ARM (archival repository for manageable accessibility), visual BUS (biological understanding from STEM), schooling DIGIA (digital intelligence governing instruction and administering), viewable HARP (historical archives & religious preachings), vivid MATH (mathematical apps in teaching and hands-on exercise), and SHARE (studies via hands-on assignment, revision and evaluation). As a result, wiseCIO promotes DATA service by providing ubiquitous web services of analytical processing via universal interface and user-centric experience in favor of logical organization of web content and relational information groupings that are vital steps in the ability of an archivist or librarian to recommend and retrieve information for a researcher. More important, wiseCIO also plays a key role as a content management system and delivery platform with capacity of hosting 10,000+ traditional web pages with great ease.
more »
« less
iDATA - Orchestrated WiseCIO for Anything as a Service
Integral digitalization aims to liaise with Universal interface for human-computer interaction, assemble Brewing aggregation via online analytical processing, and engage Centered user experience (UBC), which enables wiseCIO to orchestrate “Anything-as-a-Service” (XaaS). This paper presents three important concepts such as iDATA, iDEA and ACTiVE that together orchestrate XaaS on wiseCIO. iDATA stands for “integral digitalization via archival transformation and analytics” in support of content management, iDEA denotes “intelligence-driven efficient automation” for UBC processing with little coding required via machine learning automata, and ACTiVE represents “accessible, contextual and traceable information for vast engagement” with content delivery. Where iDATA is central to XaaS through computational thinking applied to multidimensional online analytical processing (mOLAP). Case studies are through discussed on the massive basis through iDATA over broad fields, such as manageable ARM (archival repository for manageable accessibility), animated BUS (biological understanding from STEM), sensible DASH (deliveries assembled for fast search & hits), smart DIGIA (digital intelligence governing instruction and administering), informative HARP (historical archives & religious preachings), vivid MATH (mathematical apps in teaching and hands-on exercise), and engaging SHARE (studies via hands-on assignment, review/revision and evaluation). As a result, iDATA-orchestrated wiseCIO is in favor of archival content management (ACM) and massive content delivery (MCD). Most recently, the comprehensive online teaching and learning (COTL) has been prepared and published as ACTiVE courseware with various multimedia and the student online profiles for paperless homework, labs and submissions. The ACTiVE courseware is integrated with a capacity equivalent to 10,000 + traditional web pages and broadly used for advanced remote learning (ARL) in both synchronous model and asynchronous model with great ease.
more »
« less
- PAR ID:
- 10321320
- Editor(s):
- Arai, K.
- Date Published:
- Journal Name:
- Advances in Information and Communication. FICC 2021. Advances in Intelligent Systems and Computing
- Volume:
- 1363
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
When schools and universities across the world transitioned online due to the COVID-19 pandemic, Ed+gineering, a National Science Foundation (NSF) project that partners engineering and education undergraduates to design and deliver engineering lessons to elementary students, also had to shift its hands-on lessons to a virtual format. Through the lens of social cognitive theory (SCT), this study investigates engineering and education students’ experiences during the shift to online instruction to understand how they perceived its influence on their learning. As a result of modifying their lessons for online delivery, students reported learning professional skills, including skills for teaching online and educational technology skills, as well as Science, Technology, Engineering, and Mathematics (STEM) content. Some also lamented missed learning opportunities, like practice presenting face-to-face. Students’ affective responses were often associated with preparing and delivering their lessons. SCT sheds light on how the mid-semester change in their environment, caused by the shift in designing and teaching from face-to-face to online, affected the undergraduate engineering and education students’ personal experiences and affect. Overall, the transition to fully online was effective for students’ perceived learning and teaching of engineering. Though students experienced many challenges developing multimedia content for delivering hands-on lessons online, they reported learning new skills and knowledge and expressed positive affective responses. From the gains reported by undergraduates, we believe that this cross-disciplinary virtual team assignment was a successful strategy for helping undergraduates build competencies in virtual skills. We posit that similar assignment structures and opportunities post-pandemic will also continue to prepare future students for the post-pandemic workplace.more » « less
-
This paper presents and discusses the use of simulation-based customizable online learning activities, virtual laboratories, and comprehensive e-Learning environments for teaching subjects such as materials science, chemistry, and biomanufacturing. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in real labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of student performance and designed new virtual experiments and more personalized learning assignments for students. Virtual X-Ray Laboratory and Web-based Environment for Single-Use Upstream Bioprocessing have been used to illustrate the implementation of the concept of Interactive and Adjustable Cloud-based e-Learning Tools. The virtual labs and e-learning environments have been used at two-year and four-year colleges and universities in the USA, UK, Tanzania and some other countries. The virtual X-Ray lab has also been integrated with the MITx course delivered via the MOOC (massive open online course) edX platform for Massachusetts Institute of Technology undergraduate students.more » « less
-
Research examining the rise of digital environmental governance, particularly at the subnational scale in China, is fairly limited. Critical questions regarding how digital technologies applied at the subnational level may shape or transform environmental governance are only beginning to be explored, given cities’ increasing role as sustainability experimenters and innovators. In this study, we investigate how smart city initiatives that incorporate big data, artificial intelligence, 5G, Internet of Things, and information communication technologies, may play a role in the transformation towards a “digital China.” We conceptualize three major pathways by which digital technology could transform environmental governance in China: through the generation of new data to address existing environmental data gaps; by enhancing the policy analytical capacity of environmental actors through the use of automation, digitalization, and machine learning/artificial intelligence; and last, through reshaping subnational-national, and state-society interactions that may shift balances of power. With its dual prioritization of digital technologies and climate change, China presents an opportunity for examining digitalization trends and to identify gaps in governance and implementation challenges that could present obstacles to realizing the transformative potential of digital environmental management approaches.more » « less
-
ABSTRACT A virtual X-Ray Laboratory for Materials Science and Engineering has been developed and used as a flexible and powerful tool to help undergraduate and graduate students become familiar with the design and operation of the X-ray equipment in visual and interactive ways in order to learn fundamental principles underlying X-ray analytical methods. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in physical X-ray labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Students have also used the virtual diffractometer linked and synchronized with an actual powder diffractometer for blended experimentation. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of students’ performance and designed new virtual experiments and more personalized learning assignments for students. The lab has also been integrated with the MITx course available on the massive open online course edX platform for Massachusetts Institute of Technology for undergraduate students.more » « less
An official website of the United States government

