skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Use of Web-based Virtual X-Ray Diffraction Laboratory for Teaching Materials Science and Engineering
ABSTRACT A virtual X-Ray Laboratory for Materials Science and Engineering has been developed and used as a flexible and powerful tool to help undergraduate and graduate students become familiar with the design and operation of the X-ray equipment in visual and interactive ways in order to learn fundamental principles underlying X-ray analytical methods. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in physical X-ray labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Students have also used the virtual diffractometer linked and synchronized with an actual powder diffractometer for blended experimentation. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of students’ performance and designed new virtual experiments and more personalized learning assignments for students. The lab has also been integrated with the MITx course available on the massive open online course edX platform for Massachusetts Institute of Technology for undergraduate students.  more » « less
Award ID(s):
1663296
PAR ID:
10028115
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
MRS Advances
Volume:
2
Issue:
31-32
ISSN:
2059-8521
Page Range / eLocation ID:
1687 to 1692
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents and discusses the use of simulation-based customizable online learning activities, virtual laboratories, and comprehensive e-Learning environments for teaching subjects such as materials science, chemistry, and biomanufacturing. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in real labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of student performance and designed new virtual experiments and more personalized learning assignments for students. Virtual X-Ray Laboratory and Web-based Environment for Single-Use Upstream Bioprocessing have been used to illustrate the implementation of the concept of Interactive and Adjustable Cloud-based e-Learning Tools. The virtual labs and e-learning environments have been used at two-year and four-year colleges and universities in the USA, UK, Tanzania and some other countries. The virtual X-Ray lab has also been integrated with the MITx course delivered via the MOOC (massive open online course) edX platform for Massachusetts Institute of Technology undergraduate students. 
    more » « less
  2. A cost-effective, secure, and portable electronic instrumentation equipment is used in Experiment Centric Pedagogy (ECP), formerly known as Mobile Hands-On Studio Technology and Pedagogy, as a teaching method for STEM subjects both inside and outside of the classroom. Since the Spring of 2020, ECP has been integrated into two Industrial Engineering (IE) courses: Thermodynamics and Materials Engineering. This has been done in various ways, including through student use at home and in-class demonstrations and teaching labs. During the most recent academic session (Fall 2021–Spring 2022), the effects of practical home-based experimentation and lab activities on students' attitudes, interests, and performance were examined for the Engineering Thermodynamics course. The outcomes of a survey known as the Motivated Strategies for Learning Questionnaires (MLSQ), which was given to 51 students, demonstrated better improvements in the student's motivation, epistemic, and perceptual curiosity, three crucial characteristics linked to their success. Along with the MLSQ, the Classroom Observation Protocol for Undergraduate Students (COPUS) assesses active learning in Industrial Engineering courses, and quantitative and qualitative data on the significant components of student achievement were gathered. Results obtained show that using ECP has improved students' awareness of material properties and increased their interest in learning about the thermodynamics concept of heat transfer in connection to various solid materials. 
    more » « less
  3. In physical sciences and engineering research, the study of virtual labs (VL) has generally focused on case studies about their implementation into classrooms or engineering design process and elements. However, few (if any) studies have assessed the viability of using conventional course evaluation instruments (originally designed for traditional in-person classroom environments), to evaluate virtual lab classes. This article presents a preliminary set of results from a study that examines and compares engineering undergraduate students’ evaluations of a capstone mechanical and aerospace engineering laboratory course taught in two different environments: in-person and remotely (virtual/online environment). The instrument used in both cases was the conventional course evaluation instrument that was quantitative and designed using a Likert scale. The aim of this study is to understand how this instrument captures or does not capture the students’ perceptions of their learning of course content in virtual and in-person learning environments. The second aim of this study is to explore students’ perceptions of the effectiveness and acceptance of virtual learning tools and environments applied in engineering laboratory classes. A total of 226 undergraduate students participated in this convergent mixed method study within a mechanical and aerospace engineering department at a research-1 institute in the northeastern region of the United States. Our initial analyses of the students’ course evaluations indicate that there were no statistically significant differences in the perceived teaching effectiveness of the course. However, statistically significant differences were found between the course final grades between students who participated in the in-person lab juxtapose to those who engaged in the virtual laboratory environment. In addition, qualitative results suggest that students’ perceptions of the value of in-person and virtual labs vary depending on prior engineering experiences. These results suggest that there is room for improvement in conventional course evaluation instruments of senior capstone engineering education laboratories that take place either in-person or virtually. 
    more » « less
  4. Given the strategic importance of the semiconductor manufacturing sector and the CHIPS Act impact on microelectronics, it is more imperative than ever to train the next generation of scientists and engineers in the field. However, this is a challenging feat since nanofabrication education uses hands-on cleanroom facilities. Since cleanrooms are expensive, have access constraints due to safety concerns, and offer limited instructional space, class sizes and outreach events are limited. To complement instruction in nanotechnology education, there is some open- or educational-access software, which is computer-based and focuses only on training for individual equipment, not on the typical workflow for device fabrication. The objective of this work was to develop an accessible virtual reality ecosystem that provides an immersive education and outreach on device nanofabrication that is user-friendly for a broad range of audiences. At the George Washington University (GWU), a virtual reality cleanroom prototype has been developed. It consists of a 45-minute gameplay module that covers the process flow for the fabrication of micro-scale resistors, from sample preparation to electrical characterization. We also performed a mixed methods study to investigate how 5 students in a nanoelectronics course utilized this virtual reality cleanroom prototype and what changes they recommend to improve its user interface and learner experience. The study population for this work-in-progress consisted of students enrolled in a nanoelectronics course at GWU during the 2022-2023 school year. Students taking this course can be undergraduate (junior or senior) or graduate (masters or PhD). The research questions for this study were 1) what is the user experience with the virtual reality cleanroom prototype, 2) what challenges, if any, did students experience, and 3) what changes did students recommend to improve the virtual reality cleanroom prototype learner experience? Preliminary results indicate that the students found the virtual reality cleanroom simulator helpful in repeatedly exploring the cleanroom space and the nanofabrication process flow in a safe way, thus developing more confidence in utilizing the actual cleanroom facility. The results of this study will provide insight on the design of future modules with more complicated levels and device process flows. Moreover, the study could inform the development of other virtual reality simulators for other lab activities. The improved usability of the proposed software could provide students in large classes or attending online programs in electrical and computer engineering, as well as K-12 students participating in nanotechnology-related outreach events, the opportunity to conduct realistic process workflows, learn first-hand about nanofabrication, and practice using a nanofabrication lab via trial and error in a safe virtual environment. 
    more » « less
  5. This Innovate Practice full paper presents a cloud-based personalized learning lab platform. Personalized learning is gaining popularity in online computer science education due to its characteristics of pacing the learning progress and adapting the instructional approach to each individual learner from a diverse background. Among various instructional methods in computer science education, hands-on labs have unique requirements of understanding learner's behavior and assessing learner's performance for personalization. However, it is rarely addressed in existing research. In this paper, we propose a personalized learning platform called ThoTh Lab specifically designed for computer science hands-on labs in a cloud environment. ThoTh Lab can identify the learning style from student activities and adapt learning material accordingly. With the awareness of student learning styles, instructors are able to use techniques more suitable for the specific student, and hence, improve the speed and quality of the learning process. With that in mind, ThoTh Lab also provides student performance prediction, which allows the instructors to change the learning progress and take other measurements to help the students timely. For example, instructors may provide more detailed instructions to help slow starters, while assigning more challenging labs to those quick learners in the same class. To evaluate ThoTh Lab, we conducted an experiment and collected data from an upper-division cybersecurity class for undergraduate students at Arizona State University in the US. The results show that ThoTh Lab can identify learning style with reasonable accuracy. By leveraging the personalized lab platform for a senior level cybersecurity course, our lab-use study also shows that the presented solution improves students engagement with better understanding of lab assignments, spending more effort on hands-on projects, and thus greatly enhancing learning outcomes. 
    more » « less