null
(Ed.)
Visualizing looping of two endogenous genomic loci using synthetic zinc‐finger proteins with anti‐FLAG and anti‐HA frankenbodies in living cells
- Award ID(s):
- 1845761
- PAR ID:
- 10321331
- Date Published:
- Journal Name:
- Genes to Cells
- Volume:
- 26
- Issue:
- 11
- ISSN:
- 1356-9597
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Sandstrom's theorem suggested that buoyancy fluxes can not drive the overturning circulation, an idea that physical oceanographers continue to debate. This paper attempts to provide the most fundamental examination of Sandstrom's theorem that is possible. We conclude that the fundamental role of buoyant forcing in the modern ocean is to damp the circulation, that buoyance fluxes drive significant levels of turbulence, that buoyant turbulent generation is not solely proportional to molecular diffusivity and that some of the main pathways to turbulence are non-Boussineq. We conjecture that the ocean might not be constrained by the `Anti-Turbulence' theorem.more » « less
-
Although there has been significant interest in the novel material properties of bio-inspired nanostructures, engineering them to become mechanically durable remains a significant challenge. This work demonstrates the fabrication of sapphire nanostructures with anti-glare, anti-fogging, anti-dust and scratch-resistant properties. The fabricated nanostructures demonstrated a period of 330 nm and an aspect ratio of 2.1, the highest reported for sapphire thus far. The nanostructured sapphire sample exhibited broadband and omnidirectional antireflection properties, with an enhanced transmission of up to 95.8% at a wavelength of 1360 nm. The sapphire nanostructures also exhibited enhanced wetting performance and could mitigate fogging from water condensation or repel water droplets. Furthermore, owing to their sharp features, the fabricated structures could prevent particulate adhesion and maintain a 98.7% dust-free surface area solely using gravity. Furthermore, nanoindentation and scratch tests indicated that the sapphire nanostructures have an indentation modulus and hardness of 182 GPa and 3.7 GPa, respectively, which are similar to those of bulk glass and scratch-resistant metals such as tungsten. These sapphire nanostructures can be fabricated using high-throughput nanomanufacturing techniques and can find applications in scratch-resistant optics for photonics, electronic displays, and protective windows.more » « less
An official website of the United States government

