Abstract Quantum Approximate Optimization algorithm (QAOA) aims to search for approximate solutions to discrete optimization problems with near-term quantum computers. As there are no algorithmic guarantee possible for QAOA to outperform classical computers, without a proof that bounded-error quantum polynomial time (BQP) ≠ nondeterministic polynomial time (NP), it is necessary to investigate the empirical advantages of QAOA. We identify a computational phase transition of QAOA when solving hard problems such as SAT—random instances are most difficult to train at a critical problem density. We connect the transition to the controllability and the complexity of QAOA circuits. Moreover, we find that the critical problem density in general deviates from the SAT-UNSAT phase transition, where the hardest instances for classical algorithms lies. Then, we show that the high problem density region, which limits QAOA’s performance in hard optimization problems (reachability deficits), is actually a good place to utilize QAOA: its approximation ratio has a much slower decay with the problem density, compared to classical approximate algorithms. Indeed, it is exactly in this region that quantum advantages of QAOA over classical approximate algorithms can be identified.
more »
« less
QED driven QAOA for network-flow optimization
We present a general framework for modifying quantum approximate optimization algorithms (QAOA) to solve constrained network flow problems. By exploiting an analogy between flow-constraints and Gauss' law for electromagnetism, we design lattice quantum electrodynamics (QED)- inspired mixing Hamiltonians that preserve flow constraints throughout the QAOA process. This results in an exponential reduction in the size of the configuration space that needs to be explored, which we show through numerical simulations, yields higher quality approximate solutions compared to the original QAOA routine. We outline a specific implementation for edge-disjoint path (EDP) problems related to traffic congestion minimization, numerically analyze the effect of initial state choice, and explore trade-offs between circuit complexity and qubit resources via a particle-vortex duality mapping. Comparing the effect of initial states reveals that starting with an ergodic (unbiased) superposition of solutions yields better performance than beginning with the mixer ground-state, suggesting a departure from the ``short-cut to adiabaticity" mechanism often used to motivate QAOA.
more »
« less
- Award ID(s):
- 1653007
- PAR ID:
- 10321352
- Date Published:
- Journal Name:
- Quantum
- Volume:
- 5
- ISSN:
- 2521-327X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Combinatorial optimization problems on graphs have broad applications in science and engineering. The quantum approximate optimization algorithm (QAOA) is a method to solve these problems on a quantum computer by applying multiple rounds of variational circuits. However, there exist several challenges limiting the application of QAOA to real-world problems. In this paper, we demonstrate on a trapped-ion quantum computer that QAOA results improve with the number of rounds for multiple problems on several arbitrary graphs. We also demonstrate an advanced mixing Hamiltonian that allows sampling of all optimal solutions with predetermined weights. Our results are a step toward applying quantum algorithms to real-world problems.more » « less
-
We compare the performance of the Quantum Approximate Optimization Algorithm (QAOA) with state-of-the-art classical solvers Gurobi and MQLib to solve the MaxCut problem on 3-regular graphs. We identify the minimum noiseless sampling frequency and depthprequired for a quantum device to outperform classical algorithms. There is potential for quantum advantage on hundreds of qubits and moderate depth with a sampling frequency of 10 kHz. We observe, however, that classical heuristic solvers are capable of producing high-quality approximate solutions in linear time complexity. In order to match this quality for large graph sizesN, a quantum device must support depthp > 11. Additionally, multi-shot QAOA is not efficient on large graphs, indicating that QAOAp ≤ 11 does not scale withN. These results limit achieving quantum advantage for QAOA MaxCut on 3-regular graphs. Other problems, such as different graphs, weighted MaxCut, and 3-SAT, may be better suited for achieving quantum advantage on near-term quantum devices.more » « less
-
Abstract The SAT problem is a prototypical NP-complete problem of fundamental importance in computational complexity theory with many applications in science and engineering; as such, it has long served as an essential benchmark for classical and quantum algorithms. This study shows numerical evidence for a quadratic speedup of the Grover Quantum Approximate Optimization Algorithm (G-QAOA) over random sampling for finding all solutions to 3-SAT (All-SAT) and Max-SAT problems. G-QAOA is less resource-intensive and more adaptable for these problems than Grover’s algorithm, and it surpasses conventional QAOA in its ability to sample all solutions. We show these benefits by classical simulations of many-round G-QAOA on thousands of random 3-SAT instances. We also observe G-QAOA advantages on the IonQ Aria quantum computer for small instances, finding that current hardware suffices to determine and sample all solutions. Interestingly, a single-angle-pair constraint that uses the same pair of angles at each G-QAOA round greatly reduces the classical computational overhead of optimizing the G-QAOA angles while preserving its quadratic speedup. We also find parameter clustering of the angles. The single-angle-pair protocol and parameter clustering significantly reduce obstacles to classical optimization of the G-QAOA angles.more » « less
-
The quantum approximate optimization algorithm (QAOA) is a near-term hybrid algorithm intended to solve combinatorial optimization problems, such as MaxCut. QAOA can be made to mimic an adiabatic schedule, and in the p → ∞ limit the final state is an exact maximal eigenstate in accordance with the adiabatic theorem. In this work, the connection between QAOA and adiabaticity is made explicit by inspecting the regime of p large but finite. By connecting QAOA to counterdiabatic (CD) evolution, we construct CD-QAOA angles which mimic a counterdiabatic schedule by matching Trotter "error" terms to approximate adiabatic gauge potentials which suppress diabatic excitations arising from finite ramp speed. In our construction, these "error" terms are helpful, not detrimental, to QAOA. Using this matching to link QAOA with quantum adiabatic algorithms (QAA), we show that the approximation ratio converges to one at least as 1 − C ( p ) ∼ 1 / p μ . We show that transfer of parameters between graphs, and interpolating angles for p + 1 given p are both natural byproducts of CD-QAOA matching. Optimization of CD-QAOA angles is equivalent to optimizing a continuous adiabatic schedule. Finally, we show that, using a property of variational adiabatic gauge potentials, QAOA is at least counterdiabatic, not just adiabatic, and has better performance than finite time adiabatic evolution. We demonstrate the method on three examples: a 2 level system, an Ising chain, and the MaxCut problem.more » « less
An official website of the United States government

