Quantum Approximate Optimization algorithm (QAOA) aims to search for approximate solutions to discrete optimization problems with nearterm quantum computers. As there are no algorithmic guarantee possible for QAOA to outperform classical computers, without a proof that boundederror quantum polynomial time (BQP) ≠ nondeterministic polynomial time (NP), it is necessary to investigate the empirical advantages of QAOA. We identify a computational phase transition of QAOA when solving hard problems such as SAT—random instances are most difficult to train at a critical problem density. We connect the transition to the controllability and the complexity of QAOA circuits. Moreover, we find that the critical problem density in general deviates from the SATUNSAT phase transition, where the hardest instances for classical algorithms lies. Then, we show that the high problem density region, which limits QAOA’s performance in hard optimization problems (reachability deficits), is actually a good place to utilize QAOA: its approximation ratio has a much slower decay with the problem density, compared to classical approximate algorithms. Indeed, it is exactly in this region that quantum advantages of QAOA over classical approximate algorithms can be identified.
more » « less NSFPAR ID:
 10381676
 Publisher / Repository:
 Nature Publishing Group
 Date Published:
 Journal Name:
 npj Quantum Information
 Volume:
 8
 Issue:
 1
 ISSN:
 20566387
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

null (Ed.)Quantum computers and simulators may offer significant advantages over their classical counterparts, providing insights into quantum manybody systems and possibly improving performance for solving exponentially hard problems, such as optimization and satisfiability. Here, we report the implementation of a lowdepth Quantum Approximate Optimization Algorithm (QAOA) using an analog quantum simulator. We estimate the groundstate energy of the Transverse Field Ising Model with longrange interactions with tunable range, and we optimize the corresponding combinatorial classical problem by sampling the QAOA output with highfidelity, singleshot, individual qubit measurements. We execute the algorithm with both an exhaustive search and closedloop optimization of the variational parameters, approximating the groundstate energy with up to 40 trappedion qubits. We benchmark the experiment with bootstrapping heuristic methods scaling polynomially with the system size. We observe, in agreement with numerics, that the QAOA performance does not degrade significantly as we scale up the system size and that the runtime is approximately independent from the number of qubits. We finally give a comprehensive analysis of the errors occurring in our system, a crucial step in the path forward toward the application of the QAOA to more general problem instances.more » « less

Constraint satisfaction problems are an important area of computer science. Many of these problems are in the complexity class NP which is exponentially hard for all known methods, both for worst cases and often typical. Fundamentally, the lack of any guided local minimum escape method ensures the hardness of both exact and approximate optimization classically, but the intuitive mechanism for approximation hardness in quantum algorithms based on Hamiltonian time evolution is poorly understood. We explore this question using the prototypically hard MAX3XORSAT problem class. We conclude that the mechanisms for quantum exact and approximation hardness are fundamentally distinct. We qualitatively identify why traditional methods such as quantum adiabatic optimization are not good approximation algorithms. We propose a new spectral folding optimization method that does not suffer from these issues and study it analytically and numerically. We consider random rank3 hypergraphs including extremal planted solution instances, where the ground state satisfies an anomalously high fraction of constraints compared to truly random problems. We show that, if we define the energy to be E=Nunsat−Nsat, then spectrally folded quantum optimization will return states with energy E≤AEGS (where EGS is the ground state energy) in polynomial time, where conservatively, A≃0.6. We thoroughly benchmark variations of spectrally folded quantum optimization for random classically approximationhard (planted solution) instances in simulation, and find performance consistent with this prediction. We do not claim that this approximation guarantee holds for all possible hypergraphs, though our algorithm's mechanism can likely generalize widely. These results suggest that quantum computers are more powerful for approximate optimization than had been previously assumed.more » « less

We compare the performance of the Quantum Approximate Optimization Algorithm (QAOA) with stateoftheart classical solvers Gurobi and MQLib to solve the MaxCut problem on 3regular graphs. We identify the minimum noiseless sampling frequency and depthmore » « less
p required for a quantum device to outperform classical algorithms. There is potential for quantum advantage on hundreds of qubits and moderate depth with a sampling frequency of 10 kHz. We observe, however, that classical heuristic solvers are capable of producing highquality approximate solutions in linear time complexity. In order to match this quality for large graph sizesN , a quantum device must support depthp > 11. Additionally, multishot QAOA is not efficient on large graphs, indicating that QAOAp ≤ 11 does not scale withN . These results limit achieving quantum advantage for QAOA MaxCut on 3regular graphs. Other problems, such as different graphs, weighted MaxCut, and 3SAT, may be better suited for achieving quantum advantage on nearterm quantum devices. 
null (Ed.)Quantum computational supremacy arguments, which describe a way for a quantum computer to perform a task that cannot also be done by a classical computer, typically require some sort of computational assumption related to the limitations of classical computation. One common assumption is that the polynomial hierarchy ( P H ) does not collapse, a stronger version of the statement that P ≠ N P , which leads to the conclusion that any classical simulation of certain families of quantum circuits requires time scaling worse than any polynomial in the size of the circuits. However, the asymptotic nature of this conclusion prevents us from calculating exactly how many qubits these quantum circuits must have for their classical simulation to be intractable on modern classical supercomputers. We refine these quantum computational supremacy arguments and perform such a calculation by imposing finegrained versions of the noncollapse conjecture. Our first two conjectures poly3NSETH( a ) and perintNSETH( b ) take specific classical counting problems related to the number of zeros of a degree3 polynomial in n variables over F 2 or the permanent of an n × n integervalued matrix, and assert that any nondeterministic algorithm that solves them requires 2 c n time steps, where c ∈ { a , b } . A third conjecture poly3aveSBSETH( a ′ ) asserts a similar statement about averagecase algorithms living in the exponentialtime version of the complexity class S B P . We analyze evidence for these conjectures and argue that they are plausible when a = 1 / 2 , b = 0.999 and a ′ = 1 / 2 .Imposing poly3NSETH(1/2) and perintNSETH(0.999), and assuming that the runtime of a hypothetical quantum circuit simulation algorithm would scale linearly with the number of gates/constraints/optical elements, we conclude that Instantaneous Quantum PolynomialTime (IQP) circuits with 208 qubits and 500 gates, Quantum Approximate Optimization Algorithm (QAOA) circuits with 420 qubits and 500 constraints and boson sampling circuits (i.e. linear optical networks) with 98 photons and 500 optical elements are large enough for the task of producing samples from their output distributions up to constant multiplicative error to be intractable on current technology. Imposing poly3aveSBSETH(1/2), we additionally rule out simulations with constant additive error for IQP and QAOA circuits of the same size. Without the assumption of linearly increasing simulation time, we can make analogous statements for circuits with slightly fewer qubits but requiring 10 4 to 10 7 gates.more » « less

Abstract Realizing the potential of nearterm quantum computers to solve industryrelevant constrainedoptimization problems is a promising path to quantum advantage. In this work, we consider the extractive summarization constrainedoptimization problem and demonstrate the largesttodate execution of a quantum optimization algorithm that natively preserves constraints on quantum hardware. We report results with the Quantum Alternating Operator Ansatz algorithm with a Hammingweightpreserving XY mixer (XYQAOA) on trappedion quantum computer. We successfully execute XYQAOA circuits that restrict the quantum evolution to the inconstraint subspace, using up to 20 qubits and a twoqubit gate depth of up to 159. We demonstrate the necessity of directly encoding the constraints into the quantum circuit by showing the tradeoff between the inconstraint probability and the quality of the solution that is implicit if unconstrained quantum optimization methods are used. We show that this tradeoff makes choosing good parameters difficult in general. We compare XYQAOA to the Layer Variational Quantum Eigensolver algorithm, which has a highly expressive constantdepth circuit, and the Quantum Approximate Optimization Algorithm. We discuss the respective tradeoffs of the algorithms and implications for their execution on nearterm quantum hardware.