skip to main content

Title: Online Change Point Detection for Random Dot Product Graphs
Given a sequence of random graphs, we address the problem of online monitoring and detection of changes in the underlying data distribution. To this end, we adopt the Random Dot Product Graph (RDPG) model which postulates each node has an associated latent vector, and inner products between these vectors dictate the edge formation probabilities. Existing approaches for graph change-point detection (CPD) rely either on extensive computation, or they store and process the entire observed time series. In this paper we consider the cumulative sum of a judicious monitoring function, which quantifies the discrepancy between the streaming graph observations and the nominal model. This reference distribution is inferred via spectral embeddings of the first few graphs in the sequence, and the monitoring function can be updated in an efficient, online fashion. We characterize the distribution of this running statistic, allowing us to select appropriate thresholding parameters that guarantee error-rate control. The end result is a lightweight online CPD algorithm, with a proven capability to flag distribution shifts in the arriving graphs. The novel method is tested on both synthetic and real network data, corroborating its effectiveness in quickly detecting changes in the input graph sequence.  more » « less
Award ID(s):
1809356 1750428 1934962
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 55th Asilomar Conference on Signals, Systems, and Computers
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given a sequence of possibly correlated randomly generated graphs, we address the problem of detecting changes on their underlying distribution. To this end, we will consider Random Dot Product Graphs (RDPGs), a simple yet rich family of random graphs that subsume Erdös-Rényi and Stochastic Block Model ensembles as particular cases. In RDPGs each node has an associated latent vector and inner products between these vectors dictate the edge existence probabilities. Previous works have mostly focused on the undirected and unweighted graph case, a gap we aim to close here. We first extend the RDPG model to accommodate directed and weighted graphs, a contribution whose interest transcends change-point detection (CPD). A statistic derived from the nodes' estimated latent vectors (i.e., embeddings) facilitates adoption of scalable geometric CPD techniques. The resulting algorithm yields interpretable results and facilitates pinpointing which (and when) nodes are acting differently. Numerical tests on simulated data as well as on a real dataset of graphs stemming from a Wi-Fi network corroborate the effectiveness of the proposed CPD method. 
    more » « less
  2. Abstract Consider a set of n vertices, where each vertex has a location in $\mathbb{R}^d$ that is sampled uniformly from the unit cube in $\mathbb{R}^d$ , and a weight associated to it. Construct a random graph by placing edges independently for each vertex pair with a probability that is a function of the distance between the locations and the vertex weights. Under appropriate integrability assumptions on the edge probabilities that imply sparseness of the model, after appropriately blowing up the locations, we prove that the local limit of this random graph sequence is the (countably) infinite random graph on $\mathbb{R}^d$ with vertex locations given by a homogeneous Poisson point process, having weights which are independent and identically distributed copies of limiting vertex weights. Our set-up covers many sparse geometric random graph models from the literature, including geometric inhomogeneous random graphs (GIRGs), hyperbolic random graphs, continuum scale-free percolation, and weight-dependent random connection models. We prove that the limiting degree distribution is mixed Poisson and the typical degree sequence is uniformly integrable, and we obtain convergence results on various measures of clustering in our graphs as a consequence of local convergence. Finally, as a byproduct of our argument, we prove a doubly logarithmic lower bound on typical distances in this general setting. 
    more » « less
  3. Random graphs (or networks) have gained a significant increase of interest due to its popularity in modeling and simulating many complex real-world systems. Degree sequence is one of the most important aspects of these systems. Random graphs with a given degree sequence can capture many characteristics like dependent edges and non-binomial degree distribution that are absent in many classical random graph models such as the Erdöos-Rényi graph model. In addition, they have important applications in uniform sampling of random graphs, counting the number of graphs having the same degree sequence, as well as in string theory, random matrix theory, and matching theory. In this paper, we present an OpenMP-based shared-memory parallel algorithm for generating a random graph with a prescribed degree sequence, which achieves a speedup of 20.4 with 32 cores. We also present a comparative study of several structural properties of the random graphs generated by our algorithm with that of the real-world graphs and random graphs generated by other popular methods. One of the steps in our parallel algorithm requires checking the Erdöos-Gallai characterization, i.e., whether there exists a graph obeying the given degree sequence, in parallel. This paper presents a non-trivial parallel algorithm for checking the Erdöos-Gallai characterization, which achieves a speedup of 23 with 32 cores. 
    more » « less
  4. Models capturing parameterized random walks on graphs have been widely adopted in wildlife conservation to study species dispersal as a function of landscape features. Learning the probabilistic model empowers ecologists to understand animal responses to conservation strategies. By exploiting the connection between random walks and simple electric networks, we show that learning a random walk model can be reduced to finding the optimal graph Laplacian for a circuit. We propose a moment matching strategy that correlates the model’s hitting and commuting times with those observed empirically. To find the best Laplacian, we propose a neural network capable of back-propagating gradients through the matrix inverse in an end-to-end fashion. We developed a scalable method called CGInv which back-propagates the gradients through a neural network encoding each layer as a conjugate gradient iteration. To demonstrate its effectiveness, we apply our computational framework to applications in landscape connectivity modeling. Our experiments successfully demonstrate that our framework effectively and efficiently recovers the ground-truth configurations. 
    more » « less
  5. null (Ed.)
    High dimensional piecewise stationary graphical models represent a versatile class for modelling time varying networks arising in diverse application areas, including biology, economics, and social sciences. There has been recent work in offline detection and estimation of regime changes in the topology of sparse graphical models. However, the online setting remains largely unexplored, despite its high relevance to applications in sensor networks and other engineering monitoring systems, as well as financial markets. To that end, this work introduces a novel scalable online algorithm for detecting an unknown number of abrupt changes in the inverse covariance matrix of sparse Gaussian graphical models with small delay. The proposed algorithm is based upon monitoring the conditional log-likelihood of all nodes in the network and can be extended to a large class of continuous and discrete graphical models. We also investigate asymptotic properties of our procedure under certain mild regularity conditions on the graph size, sparsity level, number of samples, and preand post-changes in the topology of the network. Numerical works on both synthetic and real data illustrate the good performance of the proposed methodology both in terms of computational and statistical efficiency across numerous experimental settings. 
    more » « less