As malicious bots reside in a network to disrupt network stability, graph neural networks (GNNs) have emerged as one of the most popular bot detection methods. However, in most cases these graphs are significantly class-imbalanced. To address this issue, graph oversampling has recently been proposed to synthesize nodes and edges, which still suffers from graph heterophily, leading to suboptimal performance. In this paper, we propose HOVER, which implements Homophilic Oversampling Via Edge Removal for bot detection on graphs. Instead of oversampling nodes and edges within initial graph structure, HOVER designs a simple edge removal method with heuristic criteria to mitigate heterophily and learn distinguishable node embeddings, which are then used to oversample minority bots to generate a balanced class distribution without edge synthesis. Experiments on TON IoT networks demonstrate the state-of-the-art performance of HOVER on bot detection with high graph heterophily and extreme class imbalance.
more »
« less
Leveraging Homophily-Augmented Energy Propagation for Bot Detection on Graphs
As the developers of malware continuously evolve their attacks and infection methods, so to must bot detection methods advance. Graph Neural Networks (GNNs) have emerged as a promising detection method. However, in most cases communications graphs reflecting bot-infected networks are plagued with class imbalance and a high level of heterophily. Graph oversampling techniques employed to tackle class imbalance on graphs have drawbacks, such as introducing noisy topological structures or exacerbating heterophily within the graph. Out-of-distribution detection (ODD) is considered as an alternative solution to address data imbalance issues, but when applied to graphs, it assumes that the underlying graph structure does not interfere with the learning of data distributions. In this paper, we present the first application of ODD methods for bot detection in a network. We propose a new energy-based ODD model, which surpasses existing ODD methods, including those tailored for ODD on graph data, and effectively mitigates performance degradation caused by graph heterophily. We substantiate our claims through extensive experiments on the TON IoT dataset, which comprises real captured bot data. The experimental results demonstrate that our model achieves state-of-the-art performance in bot detection on graphs with high graph heterophily and extreme class imbalance.
more »
« less
- Award ID(s):
- 2245968
- PAR ID:
- 10559230
- Publisher / Repository:
- International Conference on Database Systems for Advanced Applications, Springer Nature Singapore
- Date Published:
- ISBN:
- 978-981-97-5572-1
- Page Range / eLocation ID:
- 68-83
- Subject(s) / Keyword(s):
- Bot Detection Out-of-distribution Detection Class Imbalance Graph Heterophily
- Format(s):
- Medium: X
- Location:
- Gifu Japan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fraud detection has emerged as a pivotal process in different fields (e.g., e-commerce, social networks). Since interactions among entities provide valuable insights into fraudulent activities, such behaviors can be naturally represented as graphs, where graph neural networks (GNNs) have been developed as prominent models to boost the efficacy of fraud detection. However, the application of GNNs in this domain encounters significant challenges, primarily due to class imbalance and a mixture of homophily and heterophily of fraud graphs. To address these challenges, in this paper, we propose LACA, which implements fraud detection on graphs using Label-Aware feature aggregation to advance GNN training, which is regularized by Clustering Augmented optimization. Specifically, label-aware feature aggregation simplifies adaptive aggregation in homophily-heterophily mixed neighborhoods, preventing gradient domination by legitimate nodes and mitigating class imbalance in message passing. Clustering-augmented optimization provides fine-grained subclass semantics to improve detection performance, and yields additional benefit in addressing class imbalance. Extensive experiments on four fraud datasets demonstrate that LACA can significantly improve fraud detection performance on graphs with different imbalance ratios and homophily ratios, outperforming state-of-the-art GNN models.more » « less
-
DOS-GNN: Dual-Feature Aggregations with Over-Sampling for Class-Imbalanced Fraud Detection On GraphsAs fraudulent activities have shot up manifolds, fraud detection has emerged as a pivotal process in different fields (e.g., e-commerce, online reviews, and social networks). Since interactions among entities provide valuable insights into fraudulent activities, such behaviors can be naturally represented as graph structures, where graph neural networks (GNNs) have been developed as prominent models to boost the efficacy of fraud detection. In graph-based fraud detection, handling imbalanced datasets poses a significant challenge, as the minority class often gets overshadowed, diminishing the performance of conventional GNNs. While oversampling has recently been adapted for imbalanced graphs, it contends with issues such as graph heterophily and noisy edge synthesis. To address these limitations, this paper introduces DOS-GNN, incorporating Dual-feature aggregation with Over-Sampling to advance GNNs for class-imbalanced fraud detection on graphs. This model exploits feature separation and dual-feature aggregation to mitigate the impact of heterophily and acquire refined node embeddings that facilitate fraud oversampling to balance class distribution without the need for edge synthesis. Extensive experiments on four large and real-world fraud datasets demonstrate that DOS-GNN can significantly improve fraud detection performance on graphs with different imbalance ratios and homophily ratios, outperforming state-of-the-art GNN models.more » « less
-
Graph neural networks (GNNs) rely on the assumption of graph homophily, which, however, does not hold in some real-world scenarios. Graph heterophily compromises them by smoothing node representations and degrading their discrimination capabilities. To address this limitation, we propose H^2GNN, which implements Homophilic and Heterophilic feature aggregations to advance GNNs in graphs with homophily or heterophily. H^2GNN proceeds by combining local feature separation and adaptive message aggregation, where each node separates local features into similar and dissimilar feature vectors, and aggregates similarities and dissimilarities from neighbors based on connection property. This allows both similar and dissimilar features for each node to be effectively preserved and propagated, and thus mitigates the impact of heterophily on graph learning process. As dual feature aggregations introduce extra model complexity, we also offer a simplified implementation of H^2GNN to reduce training time. Extensive experiments on seven benchmark datasets have demonstrated that H^2GNN can significantly improve node classification performance in graphs with different homophily ratios, which outperforms state-of-the-art GNN models.more » « less
-
Graph-based anomaly detection is pivotal in diverse security applications, such as fraud detection in transaction networks and intrusion detection for network traffic. Standard approaches, including Graph Neural Networks (GNNs), often struggle to generalize across shifting data distributions. For instance, we observe that a real-world eBay transaction dataset revealed an over 50% decline in fraud detection accuracy when adding data from only a single new day to the graph due to data distribution shifts. This highlights a critical vulnerability in purely data-driven approaches. Meanwhile, real-world domain knowledge, such as "simultaneous transactions in two locations are suspicious," is more stable and a common existing component of real-world detection strategies. To explicitly integrate such knowledge into data-driven models such as GCNs, we propose KnowGraph, which integrates domain knowledge with data-driven learning for enhanced graph-based anomaly detection. KnowGraph comprises two principal components: (1) a statistical learning component that utilizes a main model for the overarching detection task, augmented by multiple specialized knowledge models that predict domain-specific semantic entities; (2) a reasoning component that employs probabilistic graphical models to execute logical inferences based on model outputs, encoding domain knowledge through weighted first-order logic formulas. In addition, KnowGraph has leveraged the Predictability-Computability-Stability (PCS) framework for veridical data science to estimate and mitigate prediction uncertainties. Empirically, KnowGraph has been rigorously evaluated on two significant real-world scenarios: collusion detection in the online marketplace eBay and intrusion detection within enterprise networks. Extensive experiments on these large-scale real-world datasets show that KnowGraph consistently outperforms state-of-the-art baselines in both transductive and inductive settings, achieving substantial gains in average precision when generalizing to completely unseen test graphs. Further ablation studies demonstrate the effectiveness of the proposed reasoning component in improving detection performance, especially under extreme class imbalance. These results highlight the potential of integrating domain knowledge into data-driven models for high-stakes, graph-based security applications.more » « less
An official website of the United States government

