Analysis of the function, structure, and intracellular organization of mitochondria is important for elucidating energy metabolism and intracellular energy transfer. In addition, basic and clinically oriented studies that investigate organ/tissue/cell dysfunction in various human diseases, including myopathies, cardiac/brain ischemia-reperfusion injuries, neurodegenerative diseases, cancer, and aging, require precise estimation of mitochondrial function. It should be noted that the main metabolic and functional characteristics of mitochondria obtained in situ (in permeabilized cells and tissue samples) and in vitro (in isolated organelles) are quite different, thereby compromising interpretations of experimental and clinical data. These differences are explained by the existence of the mitochondrial network, which possesses multiple interactions between the cytoplasm and other subcellular organelles. Metabolic and functional crosstalk between mitochondria and extra-mitochondrial cellular environments plays a crucial role in the regulation of mitochondrial metabolism and physiology. Therefore, it is important to analyze mitochondria in vivo or in situ without their isolation from the natural cellular environment. This review summarizes previous studies and discusses existing approaches and methods for the analysis of mitochondrial function, structure, and intracellular organization in situ.
more »
« less
Mitochondrial transplantation in cardiomyocytes: foundation, methods, and outcomes
Mitochondrial transplantation is emerging as a novel cellular biotherapy to alleviate mitochondrial damage and dysfunction. Mitochondria play a crucial role in establishing cellular homeostasis and providing cell with the energy necessary to accomplish its function. Owing to its endosymbiotic origin, mitochondria share many features with their bacterial ancestors. Unlike the nuclear DNA, which is packaged into nucleosomes and protected from adverse environmental effects, mitochondrial DNA are more prone to harsh environmental effects, in particular that of the reactive oxygen species. Mitochondrial damage and dysfunction are implicated in many diseases ranging from metabolic diseases to cardiovascular and neurodegenerative diseases, among others. While it was once thought that transplantation of mitochondria would not be possible due to their semiautonomous nature and reliance on the nucleus, recent advances have shown that it is possible to transplant viable functional intact mitochondria from autologous, allogenic, and xenogeneic sources into different cell types. Moreover, current research suggests that the transplantation could positively modulate bioenergetics and improve disease outcome. Mitochondrial transplantation techniques and consequences of transplantation in cardiomyocytes are the theme of this review. We outline the different mitochondrial isolation and transfer techniques. Finally, we detail the consequences of mitochondrial transplantation in the cardiovascular system, more specifically in the context of cardiomyopathies and ischemia.
more »
« less
- Award ID(s):
- 2109959
- PAR ID:
- 10321517
- Date Published:
- Journal Name:
- American Journal of Physiology-Cell Physiology
- Volume:
- 321
- Issue:
- 3
- ISSN:
- 0363-6143
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Alzheimer’s disease (AD) includes the formation of extracellular deposits comprising aggregated β-amyloid (Aβ) fibers associated with oxidative stress, inflammation, mitochondrial abnormalities, and neuronal loss. There is an associative link between AD and cardiac diseases; however, the mechanisms underlying the potential role of AD, particularly Aβ in cardiac cells, remain unknown. Here, we investigated the role of mitochondria in mediating the effects of Aβ1-40 and Aβ1-42 in cultured cardiomyocytes and primary coronary endothelial cells. Our results demonstrated that Aβ1-40 and Aβ1-42 are differently accumulated in cardiomyocytes and coronary endothelial cells. Aβ1-42 had more adverse effects than Aβ1-40 on cell viability and mitochondrial function in both types of cells. Mitochondrial and cellular ROS were significantly increased, whereas mitochondrial membrane potential and calcium retention capacity decreased in both types of cells in response to Aβ1-42. Mitochondrial dysfunction induced by Aβ was associated with apoptosis of the cells. The effects of Aβ1-42 on mitochondria and cell death were more evident in coronary endothelial cells. In addition, Aβ1-40 and Aβ1-42 significantly increased Ca2+ -induced swelling in mitochondria isolated from the intact rat hearts. In conclusion, this study demonstrates the toxic effects of Aβ on cell survival and mitochondria function in cardiac cells.more » « less
-
Abstract In addition to critical roles in bioenergetics, mitochondria are key contributors to the regulation of many other functions in cells, ranging from steroidogenesis to apoptosis. Numerous studies further demonstrate that cell type‐specific differences exist in mitochondria, with cells of a given lineage tailoring their endogenous mitochondrial population to suit specific functional needs. These findings, coupled with studies of the therapeutic potential of mitochondrial transplantation, provide a strong impetus to better understand how mitochondria can influence cell function or fate. Here an inducible mitochondrial depletion modelis used to study how cells lacking endogenous mitochondria respond, on a global protein expression level, to transplantation with lineage‐mismatched (LM) mitochondria. It is shown that LM mitochondrial transplantation does not alter the proteomic profile in nonmitochondria–depleted recipient cells; however, enforced depletion of endogenous mitochondria results in dramatic changes in the proteomic landscape, which returns to the predepletion state following internalization of LM mitochondria. These data, derived from a cell system that can be rendered free of influence by endogenous mitochondria, indicate that transplantation of mitochondria—even from a source that differs significantly from the recipient cell population, effectively restores a normal proteomic landscape to cells lacking their own mitochondria.more » « less
-
Mitochondrial metabolism is of central importance to diverse aspects of cell and developmental biology. Defects in mitochondria are associated with many diseases, including cancer, neuropathology, and infertility. Our understanding of mitochondrial metabolism in situ and dysfunction in diseases are limited by the lack of techniques to measure mitochondrial metabolic fluxes with sufficient spatiotemporal resolution. Herein, we developed a new method to infer mitochondrial metabolic fluxes in living cells with subcellular resolution from fluorescence lifetime imaging of NADH. This result is based on the use of a generic coarse-grained NADH redox model. We tested the model in mouse oocytes and human tissue culture cells subject to a wide variety of perturbations by comparing predicted fluxes through the electron transport chain (ETC) to direct measurements of oxygen consumption rate. Interpreting the fluorescence lifetime imaging microscopy measurements of NADH using this model, we discovered a homeostasis of ETC flux in mouse oocytes: perturbations of nutrient supply and energy demand of the cell do not change ETC flux despite significantly impacting NADH metabolic state. Furthermore, we observed a subcellular spatial gradient of ETC flux in mouse oocytes and found that this gradient is primarily a result of a spatially heterogeneous mitochondrial proton leak. We concluded from these observations that ETC flux in mouse oocytes is not controlled by energy demand or supply, but by the intrinsic rates of mitochondrial respiration.more » « less