skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Mitochondrial transplantation in cardiomyocytes: foundation, methods, and outcomes
Mitochondrial transplantation is emerging as a novel cellular biotherapy to alleviate mitochondrial damage and dysfunction. Mitochondria play a crucial role in establishing cellular homeostasis and providing cell with the energy necessary to accomplish its function. Owing to its endosymbiotic origin, mitochondria share many features with their bacterial ancestors. Unlike the nuclear DNA, which is packaged into nucleosomes and protected from adverse environmental effects, mitochondrial DNA are more prone to harsh environmental effects, in particular that of the reactive oxygen species. Mitochondrial damage and dysfunction are implicated in many diseases ranging from metabolic diseases to cardiovascular and neurodegenerative diseases, among others. While it was once thought that transplantation of mitochondria would not be possible due to their semiautonomous nature and reliance on the nucleus, recent advances have shown that it is possible to transplant viable functional intact mitochondria from autologous, allogenic, and xenogeneic sources into different cell types. Moreover, current research suggests that the transplantation could positively modulate bioenergetics and improve disease outcome. Mitochondrial transplantation techniques and consequences of transplantation in cardiomyocytes are the theme of this review. We outline the different mitochondrial isolation and transfer techniques. Finally, we detail the consequences of mitochondrial transplantation in the cardiovascular system, more specifically in the context of cardiomyopathies and ischemia.  more » « less
Award ID(s):
2109959
NSF-PAR ID:
10321517
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
American Journal of Physiology-Cell Physiology
Volume:
321
Issue:
3
ISSN:
0363-6143
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mitochondrial transplantation (MT) is a promising therapeutic strategy that involves introducing healthy mitochondria into damaged tissues to restore cellular function. This approach has shown promise in treating cardiac diseases, such as ischemia-reperfusion injury, myocardial infarction, and heart failure, where mitochondrial dysfunction plays a crucial role. Transplanting healthy mitochondria into affected cardiac tissue has resulted in improved cardiac function, reduced infract size, and enhanced cell survival in preclinical studies. Beyond cardiac applications, MT is also being explored for its potential to address various noncardiac diseases, including stroke, infertility, and genetic mitochondrial disorders. Ongoing research focused on refining techniques for mitochondrial isolation, preservation, and targeted delivery is bolstering the prospects of MT as a clinical therapy. As the scientific community gains a deeper understanding of mitochondrial dynamics and pathology, the development of MT as a clinical therapy holds significant promise. This review provides an overview of recent research on MT and discusses the methodologies involved, including sources, isolation, delivery, internalization, and distribution of mitochondria. Additionally, it explores the effects of MT and potential mechanisms in cardiac diseases, as well as non-cardiac diseases. Future prospects for MT are also discussed.

     
    more » « less
  2. Abstract

    While mitochondria maintain essential cellular functions, such as energy production, calcium homeostasis, and regulating programmed cellular death, they also play a major role in pathophysiology of many neurological disorders. Furthermore, several neurodegenerative diseases are closely linked with synaptic damage and synaptic mitochondrial dysfunction. Unfortunately, the ability to assess mitochondrial dysfunction and the efficacy of mitochondrial-targeted therapies in experimental models of neurodegenerative disease and CNS injury is limited by current mitochondrial isolation techniques. Density gradient ultracentrifugation (UC) is currently the only technique that can separate synaptic and non-synaptic mitochondrial sub-populations, though small brain regions cannot be assayed due to low mitochondrial yield. To address this limitation, we used fractionated mitochondrial magnetic separation (FMMS), employing magnetic anti-Tom22 antibodies, to develop a novel strategy for isolation of functional synaptic and non-synaptic mitochondria from mouse cortex and hippocampus without the usage of UC. We compared the yield and functionality of mitochondria derived using FMMS to those derived by UC. FMMS produced 3x more synaptic mitochondrial protein yield compared to UC from the same amount of tissue, a mouse hippocampus. FMMS also has increased sensitivity, compared to UC separation, to measure decreased mitochondrial respiration, demonstrated in a paradigm of mild closed head injury. Taken together, FMMS enables improved brain-derived mitochondrial yield for mitochondrial assessments and better detection of mitochondrial impairment in CNS injury and neurodegenerative disease.

     
    more » « less
  3. Analysis of the function, structure, and intracellular organization of mitochondria is important for elucidating energy metabolism and intracellular energy transfer. In addition, basic and clinically oriented studies that investigate organ/tissue/cell dysfunction in various human diseases, including myopathies, cardiac/brain ischemia-reperfusion injuries, neurodegenerative diseases, cancer, and aging, require precise estimation of mitochondrial function. It should be noted that the main metabolic and functional characteristics of mitochondria obtained in situ (in permeabilized cells and tissue samples) and in vitro (in isolated organelles) are quite different, thereby compromising interpretations of experimental and clinical data. These differences are explained by the existence of the mitochondrial network, which possesses multiple interactions between the cytoplasm and other subcellular organelles. Metabolic and functional crosstalk between mitochondria and extra-mitochondrial cellular environments plays a crucial role in the regulation of mitochondrial metabolism and physiology. Therefore, it is important to analyze mitochondria in vivo or in situ without their isolation from the natural cellular environment. This review summarizes previous studies and discusses existing approaches and methods for the analysis of mitochondrial function, structure, and intracellular organization in situ. 
    more » « less
  4. Alzheimer’s disease (AD) includes the formation of extracellular deposits comprising aggregated β-amyloid (Aβ) fibers associated with oxidative stress, inflammation, mitochondrial abnormalities, and neuronal loss. There is an associative link between AD and cardiac diseases; however, the mechanisms underlying the potential role of AD, particularly Aβ in cardiac cells, remain unknown. Here, we investigated the role of mitochondria in mediating the effects of Aβ1-40 and Aβ1-42 in cultured cardiomyocytes and primary coronary endothelial cells. Our results demonstrated that Aβ1-40 and Aβ1-42 are differently accumulated in cardiomyocytes and coronary endothelial cells. Aβ1-42 had more adverse effects than Aβ1-40 on cell viability and mitochondrial function in both types of cells. Mitochondrial and cellular ROS were significantly increased, whereas mitochondrial membrane potential and calcium retention capacity decreased in both types of cells in response to Aβ1-42. Mitochondrial dysfunction induced by Aβ was associated with apoptosis of the cells. The effects of Aβ1-42 on mitochondria and cell death were more evident in coronary endothelial cells. In addition, Aβ1-40 and Aβ1-42 significantly increased Ca2+ -induced swelling in mitochondria isolated from the intact rat hearts. In conclusion, this study demonstrates the toxic effects of Aβ on cell survival and mitochondria function in cardiac cells. 
    more » « less
  5. Abstract

    In addition to critical roles in bioenergetics, mitochondria are key contributors to the regulation of many other functions in cells, ranging from steroidogenesis to apoptosis. Numerous studies further demonstrate that cell type‐specific differences exist in mitochondria, with cells of a given lineage tailoring their endogenous mitochondrial population to suit specific functional needs. These findings, coupled with studies of the therapeutic potential of mitochondrial transplantation, provide a strong impetus to better understand how mitochondria can influence cell function or fate. Here an inducible mitochondrial depletion modelis used to study how cells lacking endogenous mitochondria respond, on a global protein expression level, to transplantation with lineage‐mismatched (LM) mitochondria. It is shown that LM mitochondrial transplantation does not alter the proteomic profile in nonmitochondria–depleted recipient cells; however, enforced depletion of endogenous mitochondria results in dramatic changes in the proteomic landscape, which returns to the predepletion state following internalization of LM mitochondria. These data, derived from a cell system that can be rendered free of influence by endogenous mitochondria, indicate that transplantation of mitochondria—even from a source that differs significantly from the recipient cell population, effectively restores a normal proteomic landscape to cells lacking their own mitochondria.

     
    more » « less