Abstract Spray‐induced gene silencing (SIGS) is an emerging tool for crop pest protection. It utilizes exogenously applied double‐stranded RNA to specifically reduce pest target gene expression using endogenous RNA interference machinery. In this study, SIGS methods were developed and optimized for powdery mildew fungi, which are widespread obligate biotrophic fungi that infect agricultural crops, using the known azole‐fungicide targetcytochrome P45051 (CYP51) in theGolovinomyces orontii–Arabidopsis thalianapathosystem. Additional screening resulted in the identification of conserved gene targets and processes important to powdery mildew proliferation:apoptosis‐antagonizing transcription factorin essential cellular metabolism and stress response; lipid catabolism geneslipase a,lipase 1, andacetyl‐CoA oxidasein energy production;and genes involved in manipulation of the plant host via abscisic acid metabolism (9‐cis‐epoxycarotenoid dioxygenase,xanthoxin dehydrogenase, and a putativeabscisic acid G‐protein coupled receptor) and secretion of the effector protein,effector candidate 2. Powdery mildew is the dominant disease impacting grapes and extensive powdery mildew resistance to applied fungicides has been reported. We therefore developed SIGS for theErysiphe necator–Vitis viniferasystem and tested six successful targets identified using theG. orontii–A. thalianasystem. For all targets tested, a similar reduction in powdery mildew disease was observed between systems. This indicates screening of broadly conserved targets in theG. orontii–A. thalianapathosystem identifies targets and processes for the successful control of other powdery mildew fungi. The efficacy of SIGS on powdery mildew fungi makes SIGS an exciting prospect for commercial powdery mildew control.
more »
« less
Examination of Gene Loss in the DNA Mismatch Repair Pathway and Its Mutational Consequences in a Fungal Phylum
Abstract The DNA mismatch repair (MMR) pathway corrects mismatched bases produced during DNA replication and is highly conserved across the tree of life, reflecting its fundamental importance for genome integrity. Loss of function in one or a few MMR genes can lead to increased mutation rates and microsatellite instability, as seen in some human cancers. Although loss of MMR genes has been documented in the context of human disease and in hypermutant strains of pathogens, examples of entire species and species lineages that have experienced substantial MMR gene loss are lacking. We examined the genomes of 1,107 species in the fungal phylum Ascomycota for the presence of 52 genes known to be involved in the MMR pathway of fungi. We found that the median ascomycete genome contained 49/52 MMR genes. In contrast, four closely related species of obligate plant parasites from the powdery mildew genera Erysiphe and Blumeria, have lost between five and 21 MMR genes, including MLH3, EXO1, and DPB11. The lost genes span MMR functions, include genes that are conserved in all other ascomycetes, and loss of function of any of these genes alone has been previously linked to increased mutation rate. Consistent with the hypothesis that loss of these genes impairs MMR pathway function, we found that powdery mildew genomes with higher levels of MMR gene loss exhibit increased numbers of mononucleotide runs, longer microsatellites, accelerated sequence evolution, elevated mutational bias in the A|T direction, and decreased GC content. These results identify a striking example of macroevolutionary loss of multiple MMR pathway genes in a eukaryotic lineage, even though the mutational outcomes of these losses appear to resemble those associated with detrimental MMR dysfunction in other organisms.
more »
« less
- Award ID(s):
- 2110404
- PAR ID:
- 10321570
- Editor(s):
- Wolfe, Kenneth
- Date Published:
- Journal Name:
- Genome Biology and Evolution
- Volume:
- 13
- Issue:
- 10
- ISSN:
- 1759-6653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Study on the regulation of broad‐spectrum resistance is an active area in plant biology.RESISTANCE TO POWDERY MILDEW 8.1(RPW8.1) is one of a few broad‐spectrum resistance genes triggering the hypersensitive response (HR) to restrict multiple pathogenic infections. To address the question how RPW8.1 signaling is regulated, we performed a genetic screen and tried to identify mutations enhancing RPW8.1‐mediated HR. Here, we provided evidence to connect an annexin protein with RPW8.1‐mediated resistance inArabidopsisagainst powdery mildew. We isolated and characterizedArabidopsis b7‐6mutant. A point mutation inb7‐6at theAt5g12380locus resulted in an amino acid substitution in ANNEXIN 8 (AtANN8). Loss‐of‐function or RNA‐silencing ofAtANN8led to enhanced expression ofRPW8.1, RPW8.1‐dependent necrotic lesions in leaves, and defense against powdery mildew. Conversely, over‐expression ofAtANN8compromised RPW8.1‐mediated disease resistance and cell death. Interestingly, the mutation in AtANN8 enhanced RPW8.1‐triggered H2O2. In addition, mutation in AtANN8 led to hypersensitivity to salt stress. Together, our data indicate that AtANN8 is involved in multiple stress signaling pathways and negatively regulates RPW8.1‐mediated resistance against powdery mildew and cell death, thus linking ANNEXIN's function with plant immunity.more » « less
-
Erysiphe necator is an economically important biotrophic fungal pathogen responsible for powdery mildew disease on grapevine. Currently, genome sequences are available for only a few E. necator isolates from the United States. Based on the combination of Nanopore and Illumina sequencing technologies, we present here the complete genome assembly for an isolate of E. necator, NAFU1, identified in China. We acquired a total of 15.93 Gb of raw reads. These reads were processed into a 61.12-Mb genome assembly containing 73 contigs with an N 50 of 2.06 Mb and a maximum length of 6.05 Mb. Combining the results of three gene-prediction modules (i.e., an evidence-based gene modeler [EVidenceModeler], an ab initio gene modeler, and a homology-based gene modeler), we predicted 7,235 protein-coding genes in the assembled genome of E. necator NAFU1. This information will facilitate studies of genome evolution and pathogenicity mechanisms of E. necator and other powdery mildew species through comparative genome sequence analysis and other molecular genetic tools. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .more » « less
-
Saitou, Naruya (Ed.)Abstract DNA cytosine methylation is central to many biological processes, including regulation of gene expression, cellular differentiation, and development. This DNA modification is conserved across animals, having been found in representatives of sponges, ctenophores, cnidarians, and bilaterians, and with very few known instances of secondary loss in animals. Myxozoans are a group of microscopic, obligate endoparasitic cnidarians that have lost many genes over the course of their evolution from free-living ancestors. Here, we investigated the evolution of the key enzymes involved in DNA cytosine methylation in 29 cnidarians and found that these enzymes were lost in an ancestor of Myxosporea (the most speciose class of Myxozoa). Additionally, using whole-genome bisulfite sequencing, we confirmed that the genomes of two distant species of myxosporeans, Ceratonova shasta and Henneguya salminicola, completely lack DNA cytosine methylation. Our results add a notable and novel taxonomic group, the Myxosporea, to the very short list of animal taxa lacking DNA cytosine methylation, further illuminating the complex evolutionary history of this epigenetic regulatory mechanism.more » « less
-
Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is one of many severe diseases that threaten bread wheat (Triticum aestivum L.) yield and quality worldwide. The discovery and deployment of powdery mildew resistance genes (Pm) can prevent this disease epidemic in wheat. In a previous study, we transferred the powdery mildew resistance gene Pm57 from Aegilops searsii into common wheat and cytogenetically mapped the gene in a chromosome region with the fraction length (FL) 0.75–0.87, which represents 12% segment of the long arm of chromosome 2Ss#1. In this study, we performed RNA-seq using RNA extracted from leaf samples of three infected and mock-infected wheat-Ae. searsii 2Ss#1 introgression lines at 0, 12, 24, and 48 h after inoculation with Bgt isolates. Then we designed 79 molecular markers based on transcriptome sequences and physically mapped them to Ae. searsii chromosome 2Ss#1- in seven intervals. We used these markers to identify 46 wheat-Ae. searsii 2Ss#1 recombinants induced by ph1b, a deletion mutant of pairing homologous (Ph) genes. After analyzing the 46 ph1b-induced 2Ss#1L recombinants in the region where Pm57 is located with different Bgt-responses, we physically mapped Pm57 gene on the long arm of 2Ss#1 in a 5.13 Mb genomic region, which was flanked by markers X67593 (773.72 Mb) and X62492 (778.85 Mb). By comparative synteny analysis of the corresponding region on chromosome 2B in Chinese Spring (T. aestivum L.) with other model species, we identified ten genes that are putative plant defense-related (R) genes which includes six coiled-coil nucleotide-binding site-leucine-rich repeat (CNL), three nucleotide-binding site-leucine-rich repeat (NL) and a leucine-rich receptor-like repeat (RLP) encoding proteins. This study will lay a foundation for cloning of Pm57, and benefit the understanding of interactions between resistance genes of wheat and powdery mildew pathogens.more » « less
An official website of the United States government

