skip to main content


Title: Physical Mapping of Pm57, a Powdery Mildew Resistance Gene Derived from Aegilops searsii
Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is one of many severe diseases that threaten bread wheat (Triticum aestivum L.) yield and quality worldwide. The discovery and deployment of powdery mildew resistance genes (Pm) can prevent this disease epidemic in wheat. In a previous study, we transferred the powdery mildew resistance gene Pm57 from Aegilops searsii into common wheat and cytogenetically mapped the gene in a chromosome region with the fraction length (FL) 0.75–0.87, which represents 12% segment of the long arm of chromosome 2Ss#1. In this study, we performed RNA-seq using RNA extracted from leaf samples of three infected and mock-infected wheat-Ae. searsii 2Ss#1 introgression lines at 0, 12, 24, and 48 h after inoculation with Bgt isolates. Then we designed 79 molecular markers based on transcriptome sequences and physically mapped them to Ae. searsii chromosome 2Ss#1- in seven intervals. We used these markers to identify 46 wheat-Ae. searsii 2Ss#1 recombinants induced by ph1b, a deletion mutant of pairing homologous (Ph) genes. After analyzing the 46 ph1b-induced 2Ss#1L recombinants in the region where Pm57 is located with different Bgt-responses, we physically mapped Pm57 gene on the long arm of 2Ss#1 in a 5.13 Mb genomic region, which was flanked by markers X67593 (773.72 Mb) and X62492 (778.85 Mb). By comparative synteny analysis of the corresponding region on chromosome 2B in Chinese Spring (T. aestivum L.) with other model species, we identified ten genes that are putative plant defense-related (R) genes which includes six coiled-coil nucleotide-binding site-leucine-rich repeat (CNL), three nucleotide-binding site-leucine-rich repeat (NL) and a leucine-rich receptor-like repeat (RLP) encoding proteins. This study will lay a foundation for cloning of Pm57, and benefit the understanding of interactions between resistance genes of wheat and powdery mildew pathogens.  more » « less
Award ID(s):
1822162
NSF-PAR ID:
10162068
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
21
Issue:
1
ISSN:
1422-0067
Page Range / eLocation ID:
322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The wheat wild relativeAegilops tauschiiwas previously used to transfer theLr42leaf rust resistance gene into bread wheat.Lr42confers resistance at both seedling and adult stages, and it is broadly effective against all leaf rust races tested to date.Lr42has been used extensively in the CIMMYT international wheat breeding program with resulting cultivars deployed in several countries. Here, using a bulked segregant RNA-Seq (BSR-Seq) mapping strategy, we identify three candidate genes forLr42. Overexpression of a nucleotide-binding site leucine-rich repeat (NLR) gene AET1Gv20040300 induces strong resistance to leaf rust in wheat and a mutation of the gene disrupted the resistance. TheLr42resistance allele is rare inAe. tauschiiand likely arose from ectopic recombination. Cloning ofLr42provides diagnostic markers and over 1000 CIMMYT wheat lines carryingLr42have been developed documenting its widespread use and impact in crop improvement.

     
    more » « less
  2. null (Ed.)
    Abstract Key message The first cytological characterization of the 2N v S segment in hexaploid wheat; complete de novo assembly and annotation of 2N v S segment; 2N v S frequency is increasing 2N v S and is associated with higher yield. Abstract The Aegilops ventricosa 2N v S translocation segment has been utilized in breeding disease-resistant wheat crops since the early 1990s. This segment is known to possess several important resistance genes against multiple wheat diseases including root knot nematode, stripe rust, leaf rust and stem rust. More recently, this segment has been associated with resistance to wheat blast, an emerging and devastating wheat disease in South America and Asia. To date, full characterization of the segment including its size, gene content and its association with grain yield is lacking. Here, we present a complete cytological and physical characterization of this agronomically important translocation in bread wheat. We de novo assembled the 2N v S segment in two wheat varieties, ‘Jagger’ and ‘CDC Stanley,’ and delineated the segment to be approximately 33 Mb. A total of 535 high-confidence genes were annotated within the 2N v S region, with > 10% belonging to the nucleotide-binding leucine-rich repeat (NLR) gene families. Identification of groups of NLR genes that are potentially N genome-specific and expressed in specific tissues can fast-track testing of candidate genes playing roles in various disease resistances. We also show the increasing frequency of 2N v S among spring and winter wheat breeding programs over two and a half decades, and the positive impact of 2N v S on wheat grain yield based on historical datasets. The significance of the 2N v S segment in wheat breeding due to resistance to multiple diseases and a positive impact on yield highlights the importance of understanding and characterizing the wheat pan-genome for better insights into molecular breeding for wheat improvement. 
    more » « less
  3. null (Ed.)
    Abstract Taro (Colocasia esculenta) is a food staple widely cultivated in the humid tropics of Asia, Africa, Pacific and the Caribbean. One of the greatest threats to taro production is Taro Leaf Blight caused by the oomycete pathogen Phytophthora colocasiae. Here we describe a de novo taro genome assembly and use it to analyze sequence data from a Taro Leaf Blight resistant mapping population. The genome was assembled from linked-read sequences (10x Genomics; ∼60x coverage) and gap-filled and scaffolded with contigs assembled from Oxford Nanopore Technology long-reads and linkage map results. The haploid assembly was 2.45 Gb total, with a maximum contig length of 38 Mb and scaffold N50 of 317,420 bp. A comparison of family-level (Araceae) genome features reveals the repeat content of taro to be 82%, >3.5x greater than in great duckweed (Spirodela polyrhiza), 23%. Both genomes recovered a similar percent of Benchmarking Universal Single-copy Orthologs, 80% and 84%, based on a 3,236 gene database for monocot plants. A greater number of nucleotide-binding leucine-rich repeat disease resistance genes were present in genomes of taro than the duckweed, ∼391 vs. ∼70 (∼182 and ∼46 complete). The mapping population data revealed 16 major linkage groups with 520 markers, and 10 quantitative trait loci (QTL) significantly associated with Taro Leaf Blight disease resistance. The genome sequence of taro enhances our understanding of resistance to TLB, and provides markers that may accelerate breeding programs. This genome project may provide a template for developing genomic resources in other understudied plant species. 
    more » « less
  4. Abstract

    The barley MLA nucleotide-binding leucine-rich-repeat (NLR) receptor and its orthologs confer recognition specificity to many fungal diseases, including powdery mildew, stem-, and stripe rust. We used interolog inference to construct a barley protein interactome (Hordeum vulgare predicted interactome, HvInt) comprising 66,133 edges and 7,181 nodes, as a foundation to explore signaling networks associated with MLA. HvInt was compared with the experimentally validated Arabidopsis interactome of 11,253 proteins and 73,960 interactions, verifying that the 2 networks share scale-free properties, including a power-law distribution and small-world network. Then, by successive layering of defense-specific “omics” datasets, HvInt was customized to model cellular response to powdery mildew infection. Integration of HvInt with expression quantitative trait loci (eQTL) enabled us to infer disease modules and responses associated with fungal penetration and haustorial development. Next, using HvInt and infection–time–course RNA sequencing of immune signaling mutants, we assembled resistant and susceptible subnetworks. The resulting differentially coexpressed (resistant – susceptible) interactome is essential to barley immunity, facilitates the flow of signaling pathways and is linked to mildew resistance locus a (Mla) through trans eQTL associations. Lastly, we anchored HvInt with new and previously identified interactors of the MLA coiled coli + nucleotide-binding domains and extended these to additional MLA alleles, orthologs, and NLR outgroups to predict receptor localization and conservation of signaling response. These results link genomic, transcriptomic, and physical interactions during MLA-specified immunity.

     
    more » « less
  5. Morrell, P (Ed.)
    Abstract Muscadinia rotundifolia, the muscadine grape, has been cultivated for centuries in the southeastern United States. M. rotundifolia is resistant to many of the pathogens that detrimentally affect Vitis vinifera, the grape species commonly used for winemaking. For this reason, M. rotundifolia is a valuable genetic resource for breeding. Single-molecule real-time reads were combined with optical maps to reconstruct the two haplotypes of each of the 20 M. rotundifolia cv. Trayshed chromosomes. The completeness and accuracy of the assembly were confirmed using a high-density linkage map. Protein-coding genes were annotated using an integrated and comprehensive approach. This included using full-length cDNA sequencing (Iso-Seq) to improve gene structure and hypothetical spliced variant predictions. Our data strongly support that Muscadinia chromosomes 7 and 20 are fused in Vitis and pinpoint the location of the fusion in Cabernet Sauvignon and PN40024 chromosome 7. Disease-related gene numbers in Trayshed and Cabernet Sauvignon were similar, but their clustering locations were different. A dramatic expansion of the Toll/Interleukin-1 Receptor-like Nucleotide-Binding Site Leucine-Rich Repeat (TIR-NBS-LRR) class was detected on Trayshed chromosome 12 at the Resistance to Uncinula necator 1 (RUN1)/Resistance to Plasmopara viticola 1 (RPV1) locus, which confers strong dominant resistance to powdery and downy mildews. A genome browser, annotation, and Blast tool for Trayshed are available at www.grapegenomics.com. 
    more » « less