skip to main content


Title: Factors governing wear of soda lime silicate glass: Insights from comparison between nano- and macro-scale wear
Award ID(s):
2011410
NSF-PAR ID:
10321592
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Tribology International
Volume:
171
Issue:
C
ISSN:
0301-679X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Manufacturers have faced an increasing need for the development of predictive models that predict mechanical failures and the remaining useful life (RUL) of manufacturing systems or components. Classical model-based or physics-based prognostics often require an in-depth physical understanding of the system of interest to develop closed-form mathematical models. However, prior knowledge of system behavior is not always available, especially for complex manufacturing systems and processes. To complement model-based prognostics, data-driven methods have been increasingly applied to machinery prognostics and maintenance management, transforming legacy manufacturing systems into smart manufacturing systems with artificial intelligence. While previous research has demonstrated the effectiveness of data-driven methods, most of these prognostic methods are based on classical machine learning techniques, such as artificial neural networks (ANNs) and support vector regression (SVR). With the rapid advancement in artificial intelligence, various machine learning algorithms have been developed and widely applied in many engineering fields. The objective of this research is to introduce a random forests (RFs)-based prognostic method for tool wear prediction as well as compare the performance of RFs with feed-forward back propagation (FFBP) ANNs and SVR. Specifically, the performance of FFBP ANNs, SVR, and RFs are compared using an experimental data collected from 315 milling tests. Experimental results have shown that RFs can generate more accurate predictions than FFBP ANNs with a single hidden layer and SVR. 
    more » « less