skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence of soil heterogeneity on soybean plant development and crop yield evaluated using time-series of UAV and ground-based geophysical imagery
Abstract Understanding the interactions among agricultural processes, soil, and plants is necessary for optimizing crop yield and productivity. This study focuses on developing effective monitoring and analysis methodologies that estimate key soil and plant properties. These methodologies include data acquisition and processing approaches that use unmanned aerial vehicles (UAVs) and surface geophysical techniques. In particular, we applied these approaches to a soybean farm in Arkansas to characterize the soil–plant coupled spatial and temporal heterogeneity, as well as to identify key environmental factors that influence plant growth and yield. UAV-based multitemporal acquisition of high-resolution RGB (red–green–blue) imagery and direct measurements were used to monitor plant height and photosynthetic activity. We present an algorithm that efficiently exploits the high-resolution UAV images to estimate plant spatial abundance and plant vigor throughout the growing season. Such plant characterization is extremely important for the identification of anomalous areas, providing easily interpretable information that can be used to guide near-real-time farming decisions. Additionally, high-resolution multitemporal surface geophysical measurements of apparent soil electrical conductivity were used to estimate the spatial heterogeneity of soil texture. By integrating the multiscale multitype soil and plant datasets, we identified the spatiotemporal co-variance between soil properties and plant development and yield. Our novel approach for early season monitoring of plant spatial abundance identified areas of low productivity controlled by soil clay content, while temporal analysis of geophysical data showed the impact of soil moisture and irrigation practice (controlled by topography) on plant dynamics. Our study demonstrates the effective coupling of UAV data products with geophysical data to extract critical information for farm management.  more » « less
Award ID(s):
1946391
PAR ID:
10321608
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Unmanned aerial vehicles (UAVs) equipped with multispectral sensors offer high spatial and temporal resolution imagery for monitoring crop stress at early stages of development. Analysis of UAV-derived data with advanced machine learning models could improve real-time management in agricultural systems, but guidance for this integration is currently limited. Here we compare two deep learning-based strategies for early warning detection of crop stress, using multitemporal imagery throughout the growing season to predict field-scale yield in irrigated rice in eastern Arkansas. Both deep learning strategies showed improvements upon traditional statistical learning approaches including linear regression and gradient boosted decision trees. First, we explicitly accounted for variation across developmental stages using a 3D convolutional neural network (CNN) architecture that captures both spatial and temporal dimensions of UAV images from multiple time points throughout one growing season. 3D-CNNs achieved low prediction error on the test set, with a Root Mean Squared Error (RMSE) of 8.8% of the mean yield. For the second strategy, a 2D-CNN, we considered only spatial relationships among pixels for image features acquired during a single flyover. 2D-CNNs trained on images from a single day were most accurate when images were taken during booting stage or later, with RMSE ranging from 7.4 to 8.2% of the mean yield. A primary benefit of convolutional autoencoder-like models (based on analyses of prediction maps and feature importance) is the spatial denoising effect that corrects yield predictions for individual pixels based on the values of vegetation index and thermal features for nearby pixels. Our results highlight the promise of convolutional autoencoders for UAV-based yield prediction in rice. 
    more » « less
  2. Over the last decade, the use of unmanned aerial vehicles (UAVs) for plant phenotyping and field crop monitoring has significantly evolved and expanded. These technologies have been particularly valuable for monitoring crop growth and health and for managing abiotic and biotic stresses such as drought, fertilization deficiencies, disease, and bioaggressors. This paper provides a comprehensive review of the progress in UAV‐based plant phenotyping, with a focus on the current use and application of drone technology to gain information on plant growth, development, adaptation, and yield. We reviewed over 200 research articles and discuss the best tools and methodologies for different research purposes, the challenges that need to be overcome, and the major research gaps that remain. First, the review offers a critical focus on elucidating the distinct characteristics of UAV platforms, highlighting the diverse sensor technologies employed and shedding light on the nuances of UAV data acquisition and processing methodologies. Second, it presents a comprehensive analysis of the multiple applications of UAVs in field phenotyping, underscoring the transformative potential of integrating machine learning techniques for plant analysis. Third, it delves into the realm of machine learning applications for plant phenotyping, emphasizing its role in enhancing data analysis and interpretation. Furthermore, the paper extensively examines the open issues and research challenges within the domain, addressing the complexities and limitations faced during data acquisition, processing, and interpretation. Finally, it outlines the future trends and emerging technologies in the field of UAV‐based plant phenotyping, paving the way for innovative advancements and methodologies. 
    more » « less
  3. Abstract Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions. 
    more » « less
  4. null (Ed.)
    Phenology is a distinct marker of the impacts of climate change on ecosystems. Accordingly, monitoring the spatiotemporal patterns of vegetation phenology is important to understand the changing Earth system. A wide range of sensors have been used to monitor vegetation phenology, including digital cameras with different viewing geometries mounted on various types of platforms. Sensor perspective, view-angle, and resolution can potentially impact estimates of phenology. We compared three different methods of remotely sensing vegetation phenology—an unoccupied aerial vehicle (UAV)-based, downward-facing RGB camera, a below-canopy, upward-facing hemispherical camera with blue (B), green (G), and near-infrared (NIR) bands, and a tower-based RGB PhenoCam, positioned at an oblique angle to the canopy—to estimate spring phenological transition towards canopy closure in a mixed-species temperate forest in central Virginia, USA. Our study had two objectives: (1) to compare the above- and below-canopy inference of canopy greenness (using green chromatic coordinate and normalized difference vegetation index) and canopy structural attributes (leaf area and gap fraction) by matching below-canopy hemispherical photos with high spatial resolution (0.03 m) UAV imagery, to find the appropriate spatial coverage and resolution for comparison; (2) to compare how UAV, ground-based, and tower-based imagery performed in estimating the timing of the spring phenological transition. We found that a spatial buffer of 20 m radius for UAV imagery is most closely comparable to below-canopy imagery in this system. Sensors and platforms agree within +/− 5 days of when canopy greenness stabilizes from the spring phenophase into the growing season. We show that pairing UAV imagery with tower-based observation platforms and plot-based observations for phenological studies (e.g., long-term monitoring, existing research networks, and permanent plots) has the potential to scale plot-based forest structural measures via UAV imagery, constrain uncertainty estimates around phenophases, and more robustly assess site heterogeneity. 
    more » « less
  5. Abstract Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems. 
    more » « less