skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Multi-task Contextual Atrous Residual Network for Brain Tumor Detection & Segmentation
In recent years, deep neural networks have achieved state-of-the-art performance in a variety of recognition and segmentation tasks in medical imaging including brain tumor segmentation. We investigate that segmenting a brain tumor is facing to the imbalanced data problem where the number of pixels belonging to the background class (non tumor pixel) is much larger than the number of pixels belonging to the foreground class (tumor pixel). To address this problem, we propose a multitask network which is formed as a cascaded structure. Our model consists of two targets, i.e., (i) effectively differentiate the brain tumor regions and (ii) estimate the brain tumor mask. The first objective is performed by our proposed contextual brain tumor detection network, which plays a role of an attention gate and focuses on the region around brain tumor only while ignoring the far neighbor background which is less correlated to the tumor. Different from other existing object detection networks which process every pixel, our contextual brain tumor detection network only processes contextual regions around ground-truth instances and this strategy aims at producing meaningful regions proposals. The second objective is built upon a 3D atrous residual network and under an encode-decode network in order to effectively segment both large and small objects (brain tumor). Our 3D atrous residual network is designed with a skip connection to enables the gradient from the deep layers to be directly propagated to shallow layers, thus, features of different depths are preserved and used for refining each other. In order to incorporate larger contextual information from volume MRI data, our network utilizes the 3D atrous convolution with various kernel sizes, which enlarges the receptive field of filters. Our proposed network has been evaluated on various datasets including BRATS2015, BRATS2017 and BRATS2018 datasets with both validation set and testing set. Our performance has been benchmarked by both regionbased metrics and surface-based metrics. We also have conducted comparisons against state-of-the-art approaches  more » « less
Award ID(s):
1946391
PAR ID:
10321627
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2020 25th International Conference on Pattern Recognition (ICPR)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This analysis utilizes a residual 3D convolutional neural network (equipped with 4 attention layers). The core contributions of our work are twofold: firstly, we have innovatively integrated clinical expertise into the initialization of the attention layer’s weights through whole-brain segmentation technique; secondly, we have employed various state-of-the-art model interpretation techniques. These techniques effectively annotate influential brain regions and demonstrate promising results within neuroimaging analysis, as reflected in the key metrics and outcomes. Our findings underscore the potential of deep learning in neuroimaging, especially highlighting the critical role of comprehensive brain segmentation in enhancing diagnostic accuracy. 
    more » « less
  2. Deep learning algorithms have been successfully adopted to extract meaningful information from digital images, yet many of them have been untapped in the semantic image segmentation of histopathology images. In this paper, we propose a deep convolutional neural network model that strengthens Atrous separable convolutions with a high rate within spatial pyramid pooling for histopathology image segmentation. A well-known model called DeepLabV3Plus was used for the encoder and decoder process. ResNet50 was adopted for the encoder block of the model which provides us the advantage of attenuating the problem of the increased depth of the network by using skip connections. Three Atrous separable convolutions with higher rates were added to the existing Atrous separable convolutions. We conducted a performance evaluation on three tissue types: tumor, tumor-infiltrating lymphocytes, and stroma for comparing the proposed model with the eight state-of-the-art deep learning models: DeepLabV3, DeepLabV3Plus, LinkNet, MANet, PAN, PSPnet, UNet, and UNet++. The performance results show that the proposed model outperforms the eight models on mIOU (0.8058/0.7792) and FSCR (0.8525/0.8328) for both tumor and tumor-infiltrating lymphocytes. 
    more » « less
  3. Medical image segmentation has played an important role in medical analysis and widely developed for many clinical applications. Deep learning-based approaches have achieved high performance in semantic segmentation but they are limited to pixel-wise setting and imbalanced classes data problem. In this paper, we tackle those limitations by developing a new deep learning-based model which takes into account both higher feature level i.e. region inside contour, intermediate feature level i.e. offset curves around the contour and lower feature level i.e. contour. Our proposed Offset Curves (OsC) loss consists of three main fitting terms. The first fitting term focuses on pixel-wise level segmentation whereas the second fitting term acts as attention model which pays attention to the area around the boundaries (offset curves). The third terms plays a role as regularization term which takes the length of boundaries into account. We evaluate our proposed OsC loss on both 2D network and 3D network. Two common medical datasets, i.e. retina DRIVE and brain tumor BRATS 2018 datasets are used to benchmark our proposed loss performance. The experiments have shown that our proposed OsC loss function outperforms other mainstream loss functions such as Cross-Entropy, Dice, Focal on the most common segmentation networks Unet, FCN. 
    more » « less
  4. This paper presents a novel predictive model, MetaMorph, for metamorphic registration of images with appearance changes (i.e., caused by brain tumors). In contrast to previous learning-based registration methods that have little or no control over appearance-changes, our model introduces a new regularization that can effectively suppress the negative effects of appearance changing areas. In particular, we develop a piecewise regularization on the tangent space of diffeomorphic transformations (also known as initial velocity fields) via learned segmentation maps of abnormal regions. The geometric transformation and appearance changes are treated as joint tasks that are mutually beneficial. Our model MetaMorph is more robust and accurate when searching for an optimal registration solution under the guidance of segmentation, which in turn improves the segmentation performance by providing appropriately augmented training labels. We validate MetaMorph on real 3D human brain tumor magnetic resonance imaging (MRI) scans. Experimental results show that our model outperforms the state-of-the-art learning-based registration models. The proposed MetaMorph has great potential in various image-guided clinical interventions, e.g., real-time image-guided navigation systems for tumor removal surgery. 
    more » « less
  5. Abstract We consider semantic image segmentation. Our method is inspired by Bayesian deep learning which improves image segmentation accuracy by modeling the uncertainty of the network output. In contrast to uncertainty, our method directly learns to predict the erroneous pixels of a segmentation network, which is modeled as a binary classification problem. It can speed up training comparing to the Monte Carlo integration often used in Bayesian deep learning. It also allows us to train a branch to correct the labels of erroneous pixels. Our method consists of three stages: (i) predict pixel-wise error probability of the initial result, (ii) redetermine new labels for pixels with high error probability, and (iii) fuse the initial result and the redetermined result with respect to the error probability. We formulate the error-pixel prediction problem as a classification task and employ an error-prediction branch in the network to predict pixel-wise error probabilities. We also introduce a detail branch to focus the training process on the erroneous pixels. We have experimentally validated our method on the Cityscapes and ADE20K datasets. Our model can be easily added to various advanced segmentation networks to improve their performance. Taking DeepLabv3+ as an example, our network can achieve 82.88% of mIoU on Cityscapes testing dataset and 45.73% on ADE20K validation dataset, improving corresponding DeepLabv3+ results by 0.74% and 0.13% respectively. 
    more » « less