skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Carbonate chemistry in Mission Aransas Estuary from May 2014 to Feb 2017 and Dec 2018 to Feb 2020
The Ecosystem Science and Modeling lab has been collecting water samples from five stations in the Mission-Aransas Estuary (MAE, Northwest Gulf of Mexico, Texas coast) for carbonate system characterization on a monthly to twice monthly basis since May 2014. This dataset includes temperature, salinity, dissolved inorganic carbon (DIC), total alkalinity (TA), calcium, and pH measurements from surface and bottom water samples in MAE from May 2014 – Feb 2017 and Dec 2018 – Feb 2020. Additional data for this estuary to fill in the Feb 2017 – Dec 2018 gap are also archived with BCO-DMO (http://www.bco-dmo.org/dataset/784673, doi:10.1575/1912/bco-dmo.784673.1).  more » « less
Award ID(s):
1654232
PAR ID:
10321661
Author(s) / Creator(s):
;
Publisher / Repository:
Biological and Chemical Oceanography Data Management Office (BCO-DMO)
Date Published:
Edition / Version:
1
Subject(s) / Keyword(s):
carbonate chemistry ocean acidification Estuary carbon cycling
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Estuarine total alkalinity (TA), which buffers against acidification, is temporally and spatially variable and regulated by complex, interacting hydrologic and biogeochemical processes. During periods of net evaporation (drought), the Mission-Aransas Estuary (MAE) of the northwestern Gulf of Mexico experienced TA losses beyond what can be attributed to calcification. The contribution of sedimentary oxidation of reduced sulfur to the TA loss was examined in this study. Water column samples were collected from five stations within MAE and analyzed for salinity, TA, and calcium ion concentrations. Sediment samples from four of these monitoring stations and one additional station within MAE were collected and incubated between 2018 and 2021. TA, calcium, magnesium, and sulfate ion concentrations were analyzed for these incubations. Production of sulfate along with TA consumption (or production) beyond what can be attributed to calcification (or carbonate dissolution) was observed. These results suggest that oxidation of reduced sulfur consumed TA in MAE during droughts. We estimate that the upper limit of TA consumption due to reduced sulfur oxidation can be as much as 4.60 × 108 mol day−1in MAE. This biogeochemical TA sink may be present in other similar subtropical, freshwater-starved estuaries around the world.

     
    more » « less
  2. Crustacean and rotifer density and biomass were measured from 2014 to 2022 in five drinking water reservoirs in southwestern Virginia, USA. These reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Falling Creek Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Falling Creek, Carvins Cove, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the Town of Pulaski, Virginia. The dataset consists of integrated vertical tow samples from the whole water column, just the epilimnion, and just the hypolimnion (as the difference between the full water column and epilimnion tows), as well as discrete depth measurements collected with a Schindler trap. Most samples were collected at the deepest site of each reservoir adjacent to the dam. Sampling frequency and duration varied among reservoirs and years and included weekly to monthly routine monitoring as well as intensive 24-hour sampling campaigns. In 2014-2016, zooplankton samples were collected approximately fortnightly in the spring, summer, and autumn months at Beaverdam Reservoir, Carvins Cove Reservoir, and Gatewood Reservoirs. Falling Creek Reservoir samples were collected weekly to monthly in spring and summer 2014, and Spring Hollow Reservoir samples were collected approximately fortnightly in the spring, summer, and autumn months of 2015 and 2016. In 2019, zooplankton samples were collected approximately weekly to monthly from April to November at Beaverdam Reservoir and April to September at Falling Creek Reservoir. In 2020, zooplankton samples were collected approximately weekly to monthly from May to December at Beaverdam Reservoir and June to September at Falling Creek Reservoir. In 2021 and 2022, zooplankton were collected monthly from March to December in 2021 and January to May in 2022 at Beaverdam Reservoir. Falling Creek Reservoir zooplankton samples in 2021 and 2022 were sparsely collected. During the 24-hour sampling campaigns conducted in Beaverdam Reservoir from 2019-2022, samples were collected from both the deepest pelagic site and a shallow littoral site. 
    more » « less
  3. Depth profiles of dissolved organic carbon and total and dissolved nitrogen and phosphorus were sampled from 2013 to 2022 in five drinking water reservoirs in southwestern Virginia, USA. Some additional dissolved nitrogen and phosphorus samples from January to March 2023 are included in this data product. The five drinking water reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Falling Creek Reservoir (Vinton, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the town of Pulaski, Virginia. The dataset consists of depth profiles of water chemistry samples measured at the deepest site of each reservoir adjacent to the dam. Additional water chemistry samples were collected at a gauged weir on Falling Creek Reservoir's primary inflow tributary, as well as surface samples at multiple upstream and inflow sites in Falling Creek Reservoir 2014-2022 and Beaverdam Reservoir in 2019 and 2020. One upstream site at BVR was sampled at depth in 2022. Inflow sites at Carvins Cove Reservoir were sampled from 2020 - 2022. The water column samples were collected approximately fortnightly from March-April, weekly from May-October, and monthly from November-February at Falling Creek Reservoir and Beaverdam Reservoir, approximately fortnightly from May-August in most years at Carvins Cove Reservoir, and approximately fortnightly from 2014-2016 in Gatewood and Spring Hollow Reservoirs, though sampling frequency and duration varied among reservoirs and years. Depth profiles of dissolved inorganic carbon were also collected from 2018-2022, but the analytical method for this analyte is still in development and these concentrations should be considered as preliminary data only. 
    more » « less
  4. Depth profiles of fluorescence-based phytoplankton biomass were sampled using a bbe Moldaenke FluoroProbe during 2014 to 2022 in five drinking water reservoirs in southwestern Virginia, USA. These reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Falling Creek Reservoir (Vinton, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the town of Pulaski, Virginia. The dataset consists of depth profiles of fluorescence-based phytoplankton biomass measured at the deepest site of each reservoir adjacent to the dam, except in Falling Creek Reservoir, where depth profiles were also taken at four upstream sites ranging from the riverine to the lacustrine zone during 2016-2019. Casts were taken approximately weekly from May-October and monthly from November-April. Casts were collected at Beaverdam and Falling Creek Reservoirs during all years (2014-2022); casts were collected at Carvins Cove Reservoir during 2014-2016 and 2018-2022; casts were collected at Spring Hollow Reservoir during 2014-2016 and 2019; and casts were collected at Gatewood Reservoir in 2015-2016. 
    more » « less
  5. Depth profiles of fluorescence-based phytoplankton biomass were sampled using a bbe Moldaenke FluoroProbe during 2014 to 2023 in five drinking water reservoirs in southwestern Virginia, USA. These reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Falling Creek Reservoir (Vinton, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the town of Pulaski, Virginia. The dataset consists of depth profiles of fluorescence-based phytoplankton biomass measured at the deepest site of each reservoir adjacent to the dam, except in Falling Creek Reservoir, where depth profiles were also taken at four upstream sites ranging from the riverine to the lacustrine zone during 2016-2019. Casts were taken approximately weekly from May-October and monthly from November-April. Casts were collected at Beaverdam and Falling Creek Reservoirs during all years (2014-2023); casts were collected at Carvins Cove Reservoir during 2014-2016 and 2018-2023; casts were collected at Spring Hollow Reservoir during 2014-2016 and 2019; and casts were collected at Gatewood Reservoir in 2015-2016. 
    more » « less