skip to main content


Title: Simple Temporal Networks for Improvisational Teamwork
When communication between teammates is limited to observations of each other’s actions, agents may need to improvise to stay coordinated. Unfortunately, current methods inadequately capture the uncertainty introduced by a lack of direct communication. This paper augments existing frameworks to introduce Simple Temporal Networks for Improvisational Teamwork (STN-IT) — a formulation that captures both the temporal dependencies and uncertainties between agents who need to coordinate, but lack reliable communication. We define the notion of strong controllability for STN-ITs, which establishes a static scheduling strategy for controllable agents that produces a consistent team schedule, as long as non-communicative teammates act within known problem constraints. We provide both an exact and approximate approach for finding strongly controllable schedules, empirically demonstrate the trade-offs between these two approaches on a benchmark of STN-ITs, and show analytically that the exact method is correct. In addition, we provide an empirical analysis of the exact and approximate approaches’ efficiency  more » « less
Award ID(s):
1651822
NSF-PAR ID:
10321758
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
AAAI Spring Symposium Series on Can We Talk? How to Design Multi-Agent Systems In the Absence of Reliable Communications
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When communication between teammates is limited to observations of each other's actions, agents may need to improvise to stay coordinated. Unfortunately, current methods inadequately capture the uncertainty introduced by a lack of direct communication. This paper augments existing frameworks to introduce Simple Temporal Networks for Improvisational Teamwork (STN-IT)—a formulation that captures both the temporal dependencies and uncertainties between agents who need to coordinate but lack reliable communication. We define the notion of strong controllability for STN-ITs, which establishes a static scheduling strategy for controllable agents that produces a consistent team schedule, as long as non-communicative teammates act within known problem constraints. We provide both an exact and approximate approach for finding strongly controllable schedules, empirically demonstrate the trade-offs between these approaches on benchmarks of STN-ITs, and show analytically that the exact method is correct. 
    more » « less
  2. Pattern counting in graphs is fundamental to several network sci- ence tasks, and there is an abundance of scalable methods for estimating counts of small patterns, often called motifs, in large graphs. However, modern graph datasets now contain richer structure, and incorporating temporal information in particular has become a key part of network analysis. Consequently, temporal motifs, which are generalizations of small subgraph patterns that incorporate temporal ordering on edges, are an emerging part of the network analysis toolbox. However, there are no algorithms for fast estimation of temporal motifs counts; moreover, we show that even counting simple temporal star motifs is NP-complete. Thus, there is a need for fast and approximate algorithms. Here, we present the first frequency estimation algorithms for counting temporal motifs. More specifically, we develop a sampling framework that sits as a layer on top of existing exact counting algorithms and enables fast and accurate memory-efficient estimates of temporal motif counts. Our results show that we can achieve one to two orders of magnitude speedups over existing algorithms with minimal and controllable loss in accuracy on a number of datasets. 
    more » « less
  3. We describe and analyze our efforts to support Learning Assistants (LAs)—undergraduate peer educators who simultaneously take a 3-credit pedagogy course—in fostering equitable team dynamics and collaboration within a project-based engineering design course. Tonso and others have shown that (a) inequities can “live” in mundane interactions such as those among students within design teams and (b) those inequities both reflect and (re)produce broader cultural patterns and narratives (e.g. Wolfe & Powell, 2009; Tonso, 1996, 2006a, 2006b; McLoughlin, 2005). LAs could be well-positioned to notice and potentially disrupt inequitable patterns of participation within design teams. In this paper, we explore (1) How do LAs notice, diagnose, and consider responding to teamwork troubles within design teams, and (2) What ideological assumptions plausibly contribute to LAs’ sensemaking around their students’ teamwork troubles? To do so, we analyze how the LAs notice and consider responding to issues of equitable teamwork and participation, as exhibited in three related activities: (i) an in-class roleplay, (ii) observing and diagnosing teamwork troubles (TTs) in the engineering design teams, and (iii) imagining possible instructional responses to those troubles, and students’ possible reactions. We articulate three modes of thinking that roughly capture patterns in LAs’ descriptions and diagnoses of, and imagined responses to, the teamwork troubles: individual accountability, where the trouble is seen as caused by individual(s) described as “off task” or “checked out” or demonstrating some level of incompetence; delegation of work, where the trouble was located in the team leader’s inability to delegate tasks effectively to team members, or in the group’s general lack of communication about what tasks need to be completed, who should execute the tasks, and what work other groups in the team were doing; and emergent systems, where trouble was described as a group-level phenomenon emerging from the patterns of interaction amongst group members, contextual features, and larger structural forces. We find that LAs drew on individual accountability and delegation of work to evaluate TTs. Much rarer were ascriptions of TTs to interactional dynamics between teammates. We connected these modes to the underlying ideological assumptions that have consequences for how meritocracy and technocracy (Slaton, 2015; Cech, 2014) play out in an engineering design classroom and serve to ameliorate or reify engineering mindsets (Riley, 2008). The modes are asymmetric, in that emergent systems based interpretations hold more potential for elucidating ongoing social processes, for challenging meritocracy and socio-technical duality, and for seeing power differentials within interpersonal and institutional contexts. We argue for the need to better understand the ideological assumptions underlying how peer-educators—and other instructors—interpret classroom events. 
    more » « less
  4. There remains a lack of research on professional engineering work practices [1]. This deficiency is troubling because engineering education is organized and reorganized based on claims and assumptions about what professional engineering work is or will be. Without well-researched and trustworthy representations of practice, it is questionable whether engineering educators can adequately prepare future engineers for workplace realities. Although it is important that the preparation of future engineers not be tied solely to the workforce, there is a significant “disconnect between engineers in practice and engineers in academe” [2, p. 18]. If educators want to prepare students for professional success – including by assuming roles as future leaders and change agents – concrete images of engineering work are critical resources for rethinking engineering education [1]. The need for such resources is even more urgent given ongoing changes to engineering work under the forces of globalization, new organizational configurations, and new technologies of communication, design, and production. More research is needed to document images that are often discounted by students and even faculty, i.e., portrayals of engineering practice that emphasize its non-technical and non-calculative sides, as well as its non-individual aspects [3-4]. The aim of this work-in-progress paper is to introduce an exploratory project that will test innovative approaches to data collection and analysis for rapidly generating new knowledge about engineering practice. Traditionally, engineering practices have primarily been studied using in-depth ethnographic field research, requiring researchers to embed themselves as participant observers in the workplace. Yet technical work increasingly involves open workspaces and geographically distributed teams, frequent changes in job roles and team composition, and many layers of digital abstraction and collaboration. It thus may not be feasible or optimal to perform on-site research for extended periods of time. The main aim of this paper is to introduce method innovations for conducting field research which can potentially generate higher quality data more efficiently. Before doing so, we briefly overview prior research on engineering practice. 
    more » « less
  5. null (Ed.)
    There remains a lack of research on professional engineering work practices [1]. This deficiency is troubling because engineering education is organized and reorganized based on claims and assumptions about what professional engineering work is or will be. Without well-researched and trustworthy representations of practice, it is questionable whether engineering educators can adequately prepare future engineers for workplace realities. Although it is important that the preparation of future engineers not be tied solely to the workforce, there is a significant “disconnect between engineers in practice and engineers in academe” [2, p. 18]. If educators want to prepare students for professional success – including by assuming roles as future leaders and change agents – concrete images of engineering work are critical resources for rethinking engineering education [1]. The need for such resources is even more urgent given ongoing changes to engineering work under the forces of globalization, new organizational configurations, and new technologies of communication, design, and production. More research is needed to document images that are often discounted by students and even faculty, i.e., portrayals of engineering practice that emphasize its non-technical and non-calculative sides, as well as its non-individual aspects [3-4]. The aim of this work-in-progress paper is to introduce an exploratory project that will test innovative approaches to data collection and analysis for rapidly generating new knowledge about engineering practice. Traditionally, engineering practices have primarily been studied using in-depth ethnographic field research, requiring researchers to embed themselves as participant observers in the workplace. Yet technical work increasingly involves open workspaces and geographically distributed teams, frequent changes in job roles and team composition, and many layers of digital abstraction and collaboration. It thus may not be feasible or optimal to perform on-site research for extended periods of time. The main aim of this paper is to introduce method innovations for conducting field research which can potentially generate higher quality data more efficiently. Before doing so, we briefly overview prior research on engineering practice. 
    more » « less