skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D Yang-Mills glueballs vs closed effective strings
A bstract Recent lattice results strongly support the Axionic String Ansatz (ASA) for quantum numbers of glueballs in 3D Yang-Mills theory. The ASA treats glueballs as closed bosonic strings. The corresponding worldsheet theory is a deformation of the minimal Nambu-Goto theory. In order to understand better the ASA strings and as a first step towards a perturbative calculation of the glueball mass splittings we compare the ASA spectrum to the closed effective string theory. Namely, we model glueballs as excitations around the folded rotating rod solution with a large angular momentum J . The resulting spectrum agrees with the ASA in the regime of validity of the effective theory, i.e., in the vicinity of the leading Regge trajectory. In particular, closed effective string theory correctly predicts that only glueballs of even spin J show up at the leading Regge trajectory. Interestingly though, the closed effective string theory overestimates the number of glueball states far above the leading Regge trajectory.  more » « less
Award ID(s):
1915219
PAR ID:
10321772
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
7
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We use effective string theory to study mesons with large spinJin largeNcQCD as rotating open strings. In the first part of this work, we formulate a consistent effective field theory (EFT) for open spinning strings with light quarks. Our EFT provides a consistent treatment of the endpoints’ singularities that arise in the massless limit. We obtain results, in a systematic 1/Jexpansion, for the spectrum of the leading and daughter Regge trajectories. Interestingly, we find that the redshift factor associated with the quarks’ acceleration implies that the applicability regime of the EFT is narrower compared to that of static flux tubes. In the second part of this work, we discuss several extensions of phenomenological interests, including mesons with heavy quarks, the quarks’ spin and the daughter Regge trajectories associated with the worldsheet axion, a massive string mode identified in lattice simulations of 4dflux tubes. We compare our predictions with 4dQCD spectroscopy data, and suggest potentialstringyinterpretations of the observed mesons. We finally comment on the relation between the EFT spectrum and the Axionic String Ansatz, a recently proposed characterization of the spectrum of Yang-Mills glueballs. 
    more » « less
  2. A bstract In the AdS/CFT correspondence, single trace operators of large- N gauge theories at large spin J can be described by classical spinning strings, giving a geometric and classical description of their spectrum at strong coupling. We observe that in AdS 3 these strings have significant gravitational back-reaction at sufficiently large spin, since the gravitational force does not decay at long distances. We construct solutions for folded spinning strings coupled to gravity in AdS 3 and compute their spectrum, corresponding to the leading Regge trajectory of Virasroro primary operators. These solutions exist only below a maximal spin J < J max , and as J → J max the solution approaches an extremal rotating BTZ black hole. 
    more » « less
  3. A bstract The 3d Ising model in the low temperature (ferromagnetic) phase describes dynamics of two-dimensional surfaces — domain walls between clusters of parallel spins. The Kramers-Wannier duality maps these surfaces into worldsheets of confining strings in the Wegner’s ℤ 2 gauge theory. We study the excitation spectrum of long Ising strings by simulating the ℤ 2 gauge theory on a lattice. We observe a strong mixing between string excitations and the lightest glueball state and do not find indications for light massive resonances on the string worldsheet. 
    more » « less
  4. The recent BESIII announcement of a pseudoscalar glueball candidate makes an update on glueballs from lattice QCD timely. A brief review of how glueballs are studied in lattice QCD is given, and the reasons that glueballs are difficult to study both in lattice QCD with dynamical quarks and in experiments are outlined. Recent glueball studies in lattice QCD are then presented, and an exploratory investigation of the scalar glueball using glueball, meson, and meson-meson operators is summarized, suggesting that no scalar state below 2 GeV or so can be considered to be predominantly a glueball state. 
    more » « less
  5. A<sc>bstract</sc> Recently there has been a notable progress in the study of glueball states in lattice gauge theories, in particular extrapolating their spectrum to the limit of large number of colorsN. In this note we compare the largeNlattice results with the holographic predictions, focusing on the Klebanov-Strassler model, which describes a gauge theory with$$ \mathcal{N} $$ N = 1 supersymmetry. We note that glueball spectrum demonstrates approximate universality across a range of gauge theory models. Because of this universality the holographic models can give reliable predictions for the spectrum of pure SU(N) Yang-Mills theories with and without supersymmetry. This is especially important for the supersymmetric theories, for which no firm lattice predictions exist yet, and the holographic models remain the most tractable approach. For SU(N) theories with largeNthe lattice non-supersymmetric and holographic supersymmetric predictions for the mass ratios of the lightest states in various sectors agree up to 5–8%, supporting the proposed universality. In particular, both lattice and holography give predictions for the 2++and 1−−mass ratio, consistent with the known constraints on the pomeron and odderon Regge trajectories. 
    more » « less