skip to main content


Title: Photocatalytic Degradation of Fluoroquinolone Antibiotics in Solution by Au@ZnO-rGO-gC3N4 Composites
The photocatalytic degradation of two quinolone-type antibiotics (ciprofloxacin and levofloxacin) in aqueous solution was studied, using catalysts based on ZnO nanoparticles, which were synthesized by a thermal procedure. The efficiency of ZnO was subsequently optimized by incorporating different co-catalysts of gC3N4, reduced graphene oxide, and nanoparticles of gold. The catalysts were fully characterized by electron microscopy (TEM and SEM), XPS, XRD, Raman, and BET surface area. The most efficient catalyst was 10%Au@ZnONPs-3%rGO-3%gC3N4, obtaining degradations of both pollutants above 96%. This catalyst has the largest specific area, and its activity was related to a synergistic effect, involving factors such as the surface of the material and the ability to absorb radiation in the visible region, mainly produced by the incorporation of rGO and gC3N4 in the semiconductor. The use of different scavengers during the catalytic process, was used to establish the possible photodegradation mechanism of both antibiotics.  more » « less
Award ID(s):
1849243
NSF-PAR ID:
10321796
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Catalysts
Volume:
12
Issue:
2
ISSN:
2073-4344
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The photocatalytic hydrogen evolution reaction (HER) by water splitting has been studied, using catalysts based on crystalline TiO2 nanowires (TiO2NWs), which were synthesized by a hydrothermal procedure. This nanomaterial was subsequently modified by incorporating different loadings (1%, 3% and 5%) of gold nanoparticles (AuNPs) on the surface, previously exfoliated MoS2 nanosheets, and CeO2 nanoparticles (CeO2NPs). These nanomaterials, as well as the different synthesized catalysts, were characterized by electron microscopy (HR-SEM and HR-TEM), XPS, XRD, Raman, Reflectance and BET surface area. HER studies were performed in aqueous solution, under irradiation at different wavelengths (UV-visible), which were selected through the appropriate use of optical filters. The results obtained show that there is a synergistic effect between the different nanomaterials of the catalysts. The specific area of the catalyst, and especially the increased loading of MoS2 and CeO2NPs in the catalyst substantially improved the H2 production, with values of ca. 1114 μm/hg for the catalyst that had the best efficiency. Recyclability studies showed only a decrease in activity of approx. 7% after 15 cycles of use, possibly due to partial leaching of gold nanoparticles during catalyst use cycles. The results obtained in this research are certainly relevant and open many possibilities regarding the potential use and scaling of these heterostructures in the photocatalytic production of H2 from water. 
    more » « less
  2. Abstract

    Converting CO2to value‐added chemicals,e. g., CH3OH, is highly desirable in terms of the carbon cycling while reducing CO2emission from fossil fuel combustion. Cu‐based nanocatalysts are among the most efficient for selective CO2‐to‐CH3OH transformation; this conversion, however, suffers from low reactivity especially in the thermodynamically favored low temperature range. We herein report ultrasmall copper (Cu) nanocatalysts supported on crystalline, mesoporous zinc oxide nanoplate (Cu@mZnO) with notable activity and selectivity of CO2‐to‐CH3OH in the low temperature range of 200–250 °C. Cu@mZnO nanoplates are prepared based on the crystal‐crystal transition of mixed Cu and Zn basic carbonates to mesoporous metal oxides and subsequent hydrogen reduction. Under the nanoconfinement of mesopores in crystalline ZnO frameworks, ultrasmall Cu nanoparticles with an average diameter of 2.5 nm are produced. Cu@mZnO catalysts have a peak CH3OH formation rate of 1.13 mol h−1per 1 kg under ambient pressure at 246 °C, about 25 °C lower as compared to that of the benchmark catalyst of Cu−Zn−Al oxides. Our new synthetic strategy sheds some valuable insights into the design of porous catalysts for the important conversion of CO2‐to‐CH3OH.

     
    more » « less
  3. Nanoarray-based monolithic catalysts have been developed for various applications, including CO oxidation, hydrocarbon combustion, lean NOx trapping, and low-pressure CO2 hydrogenation. In this work, SO2 adsorption properties have been explored and evaluated on the cordierite honeycomb monoliths grown with zinc oxide nanoarray (ZnO), zinc oxide nanoarray washcoated by BaCO3 nanoparticles (ZnO/BaCO3), and manganese oxide nanowire array with cryptomelane structure (MnOx) at a temperature range from 50 °C to 425 °C. All samples showed temperature-dependent SO2 adsorption behaviors. The adsorption results revealed the performance order: MnOx > ZnO/BaCO3 > ZnO, with ~90% SO2 adsorbed in MnOx at 425 °C. Washcoated BaCO3 contributed to the improvement of SO2 adsorption in ZnO nanoarray, and the best performance displayed in MnOx may be attributed to their high specific surface area. After regeneration, nanoarrays all exhibited good thermal stability during test-regeneration cycles. No additional phase was formed in regenerated ZnO nanoarrays (ZnO-R), while BaCO3 was converted to BaSO4 in the regenerated ZnO/BaCO3 nanoarrays (ZnO/BaCO3-R), and the sulfur species (possibly MnSO4) and Mn2O3 were found in regenerated MnOx nanoarrays (MnOx-R). It is noted that small amount of sulfur species (possibly MnSO4) may promote the SO2 adsorption of MnOx-R at a lower temperature, while the formed Mn2O3 contributed to the deactivation of MnOx-R. 
    more » « less
  4. Advances in the synthesis and processing of graphene-based materials have presented the opportunity to design novel lithium-ion battery (LIB) anode materials that can meet the power requirements of next-generation power devices. In this work, a poly(methacrylic acid) (PMAA)-induced self-assembly process was used to design super-mesoporous Fe 3 O 4 and reduced-graphene-oxide (Fe 3 O 4 @RGO) anode materials. We demonstrate the relationship between the media pH and Fe 3 O 4 @RGO nanostructure, in terms of dispersion state of PMAA-stabilized Fe 3 O 4 @GO sheets at different surrounding pH values, and porosity of the resulted Fe 3 O 4 @RGO anode. The anode shows a high surface area of 338.8 m 2 g −1 with a large amount of 10–40 nm mesopores, which facilitates the kinetics of Li-ions and electrons, and improves electrode durability. As a result, Fe 3 O 4 @RGO delivers high specific-charge capacities of 740 mA h g −1 to 200 mA h g −1 at various current densities of 0.5 A g −1 to 10 A g −1 , and an excellent capacity-retention capability even after long-term charge–discharge cycles. The PMAA-induced assembly method addresses the issue of poor dispersion of Fe 3 O 4 -coated graphene materials—which is a major impediment in the synthesis process—and provides a facile synthetic pathway for depositing Fe 3 O 4 and other metal oxide nanoparticles on highly porous RGO. 
    more » « less
  5. Iron oxide nanomaterials participate in redox processes that give them ideal properties for their use as earth-abundant catalysts. Fabricating nanocatalysts for such applications requires detailed knowledge of the deposition and growth. We report the spontaneous deposition of iron oxide nanoparticles on HOPG in defect areas and on step edges from a metal precursor solution. To study the nucleation and growth of iron oxide nanoparticles, tailored defects were created on the surface of HOPG using various ion sources that serve as the target sites for iron oxide nucleation. After solution deposition and annealing, the iron oxide nanoparticles were found to nucleate and coalesce at 400 °C. AFM revealed that the particles on the sp 3 carbon sites enabled the nanoparticles to aggregate into larger particles. The iron oxide nanoparticles were characterized as having an Fe 3+ oxidation state and two different oxygen species, Fe–O and Fe–OH/Fe–OOH, as determined by XPS. STEM imaging and EDS mapping confirmed that the majority of the nanoparticles grown were converted to hematite after annealing at 400 °C. A mechanism of spontaneous and selective deposition on the HOPG surface and transformation of the iron oxide nanoparticles is proposed. These results suggest a simple method for growing nanoparticles as a model catalyst. 
    more » « less