skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genome-wide association study reveals the genetic architecture of 27 agronomic traits in tomato
Abstract Tomato (Solanum lycopersicum) is a highly valuable fruit crop, and yield is one of the most important agronomic traits. However, the genetic architecture underlying tomato yield-related traits has not been fully addressed. Based on ∼4.4 million single nucleotide polymorphisms obtained from 605 diverse accessions, we performed a comprehensive genome-wide association study for 27 agronomic traits in tomato. A total of 239 significant associations corresponding to 129 loci, harboring many previously reported and additional genes related to vegetative and reproductive development, were identified, and these loci explained an average of ∼8.8% of the phenotypic variance. A total of 51 loci associated with 25 traits have been under selection during tomato domestication and improvement. Furthermore, a candidate gene, Sl-ACTIVATED MALATE TRANSPORTER15, that encodes an aluminum-activated malate transporter was functionally characterized and shown to act as a pivotal regulator of leaf stomata formation, thereby affecting photosynthesis and drought resistance. This study provides valuable information for tomato genetic research and breeding.  more » « less
Award ID(s):
1855585
PAR ID:
10321890
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Plant Physiology
Volume:
186
Issue:
4
ISSN:
0032-0889
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Theaus(Oryza sativaL.) varietal group comprises of aus, boro, ashina and rayada seasonal and/or field ecotypes, and exhibits unique stress tolerance traits, making it valuable for rice breeding. Despite its importance, the agro-morphological diversity and genetic control of yield traits inausrice remain poorly understood. To address this knowledge gap, we investigated the genetic structure of 181ausaccessions using 399,115 SNP markers and evaluated them for 11 morpho-agronomic traits. Through genome-wide association studies (GWAS), we aimed to identify key loci controlling yield and plant architectural traits. Our population genetic analysis unveiled six subpopulations with strong geographical patterns. Subpopulation-specific differences were observed in most phenotypic traits. Principal component analysis (PCA) of agronomic traits showed that principal component 1 (PC1) was primarily associated with panicle traits, plant height, and heading date, while PC2 and PC3 were linked to primary grain yield traits. GWAS using PC1 identifiedOsSAC1on Chromosome 7 as a significant gene influencing multiple agronomic traits. PC2-based GWAS highlighted the importance ofOsGLT1and OsPUP4/ Big Grain 3 in determining grain yield. Haplotype analysis of these genes in the 3,000 Rice Genome Panel revealed distinct genetic variations inausrice. In summary, this study offers valuable insights into the genetic structure and phenotypic diversity ofausrice accessions. We have identified significant loci associated with essential agronomic traits, withGLT1, PUP4, andSAC1genes emerging as key players in yield determination. 
    more » « less
  2. Traits in wild relatives of crop species can help breed sustainable crop varieties that produce more food with fewer resources. To make use of this variation, we need to find the genetic regions that allow wild species to use water and nutrients more efficiently. Leaf anatomy has a major effect on photosynthesis by determining rates of carbon gain and water loss. However, finding the genetic regions underlying leaf anatomical evolution has been limited by low-throughput and low-resolution trait measurements. 3D imaging using X-ray microcomputed tomography (μCT) may overcome these obstacles by providing high-throughput, high-resolution data on leaf anatomy. Compared to traditional 2D methods for leaf anatomy, 3D imaging captures physiologically important volumetric traits, is less biased, and encompasses a larger leaf area. We used synchrotron μCT to measure leaf anatomy on two tomato species Solanum lycopersicum (cultivated tomato) and S. pennellii (wild, drought-tolerant species), and four introgression lines containing loci that alter leaf anatomy. We measured stomatal density, size, and 3D arrangement, as well as leaf thickness and mesophyll porosity. Preliminary analyses show that synchrotron μCT can identify previously described quantitative trait loci for stomatal traits and leaf thickness and show how those traits are related to 3D leaf anatomy. We will use finite element models to show how these anatomical differences may contribute to genetic variation leaf CO2 and water vapour exchange. 
    more » « less
  3. SUMMARY Wild relatives of tomato are a valuable source of natural variation in tomato breeding, as many can be hybridized to the cultivated species (Solanum lycopersicum). Several, includingSolanum lycopersicoides, have been crossed toS. lycopersicumfor the development of ordered introgression lines (ILs), facilitating breeding for desirable traits. Despite the utility of these wild relatives and their associated ILs, few finished genome sequences have been produced to aid genetic and genomic studies. Here we report a chromosome‐scale genome assembly forS. lycopersicoidesLA2951, which contains 37 938 predicted protein‐coding genes. With the aid of this genome assembly, we have precisely delimited the boundaries of theS. lycopersicoidesintrogressions in a set ofS. lycopersicumcv. VF36 × LA2951 ILs. We demonstrate the usefulness of the LA2951 genome by identifying several quantitative trait loci for phenolics and carotenoids, including underlying candidate genes, and by investigating the genome organization and immunity‐associated function of the clusteredPtogene family. In addition, syntenic analysis of R2R3MYB genes sheds light on the identity of theAuberginelocus underlying anthocyanin production. The genome sequence and IL map provide valuable resources for studying fruit nutrient/quality traits, pathogen resistance, and environmental stress tolerance. We present a new genome resource for the wild speciesS. lycopersicoides, which we use to shed light on theAuberginelocus responsible for anthocyanin production. We also provide IL boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene β‐cyclase whose function we demonstrate. 
    more » « less
  4. null (Ed.)
    CRISPR-mediated genome editing has been widely applied in plants to make uncomplicated genomic modifications including gene knockout and base changes. However, the introduction of many genetic variants related to valuable agronomic traits requires complex and precise DNA changes. Different CRISPR systems have been developed to achieve efficient sequence insertion and replacement but with limited success. A recent study has significantly improved NHEJ- and HDR-mediated sequence insertion and replacement using chemically modified donor templates. Together with other newly developed precise editing systems, such as prime editing and CRISPR-associated transposases, these technologies will provide new avenues to further the plant genome editing field. 
    more » « less
  5. Abstract BackgroundCapturing the genetic diversity of wild relatives is crucial for improving crops because wild species are valuable sources of agronomic traits that are essential to enhance the sustainability and adaptability of domesticated cultivars. Genetic diversity across a genus can be captured in super-pangenomes, which provide a framework for interpreting genomic variations. ResultsHere we report the sequencing, assembly, and annotation of nine wild North American grape genomes, which are phased and scaffolded at chromosome scale. We generate a reference-unbiased super-pangenome using pairwise whole-genome alignment methods, revealing the extent of the genomic diversity among wild grape species from sequence to gene level. The pangenome graph captures genomic variation between haplotypes within a species and across the different species, and it accurately assesses the similarity of hybrids to their parents. The species selected to build the pangenome are a great representation of the genus, as illustrated by capturing known allelic variants in the sex-determining region and for Pierce’s disease resistance loci. Using pangenome-wide association analysis, we demonstrate the utility of the super-pangenome by effectively mapping short reads from genus-wide samples and identifying loci associated with salt tolerance in natural populations of grapes. ConclusionsThis study highlights how a reference-unbiased super-pangenome can reveal the genetic basis of adaptive traits from wild relatives and accelerate crop breeding research. 
    more » « less