Cuntz, Joachim
(Ed.)
Complexity rank for C*-algebras was introduced by the second author and Yu for applications towards the UCT: very roughly, this rank is at most n if you can repeatedly cut the C∗-algebra in half at most n times, and end up with something finite-dimensional. In this paper, we study complexity rank, and also a weak complexity rank that we introduce; having weak complexity rank at most one can be thought of as “two-colored local finite-dimensionality”. We first show that, for separable, unital, and simple C*-algebras, weak complexity rank one is equivalent to the conjunction of nuclear dimension one and real rank zero. In particular, this shows that the UCT for all nuclear C*-algebras is equivalent to equality of the weak complexity rank and the complexity ranks for Kirchberg algebras with zero K-theory groups. However, we also show using a K-theoretic obstruction (torsion in K1) that weak complexity rank one and complexity rank one are not the same in general. We then use the Kirchberg–Phillips classification theorem to compute the complexity rank of all UCT Kirchberg algebras: it equals one when the K1-group is torsion-free, and equals two otherwise.
more »
« less
An official website of the United States government

