skip to main content


Title: Parallel processing in speech perception with local and global representations of linguistic context
Speech processing is highly incremental. It is widely accepted that human listeners continuously use the linguistic context to anticipate upcoming concepts, words, and phonemes. However, previous evidence supports two seemingly contradictory models of how a predictive context is integrated with the bottom-up sensory input: Classic psycholinguistic paradigms suggest a two-stage process, in which acoustic input initially leads to local, context-independent representations, which are then quickly integrated with contextual constraints. This contrasts with the view that the brain constructs a single coherent, unified interpretation of the input, which fully integrates available information across representational hierarchies, and thus uses contextual constraints to modulate even the earliest sensory representations. To distinguish these hypotheses, we tested magnetoencephalography responses to continuous narrative speech for signatures of local and unified predictive models. Results provide evidence that listeners employ both types of models in parallel. Two local context models uniquely predict some part of early neural responses, one based on sublexical phoneme sequences, and one based on the phonemes in the current word alone; at the same time, even early responses to phonemes also reflect a unified model that incorporates sentence-level constraints to predict upcoming phonemes. Neural source localization places the anatomical origins of the different predictive models in nonidentical parts of the superior temporal lobes bilaterally, with the right hemisphere showing a relative preference for more local models. These results suggest that speech processing recruits both local and unified predictive models in parallel, reconciling previous disparate findings. Parallel models might make the perceptual system more robust, facilitate processing of unexpected inputs, and serve a function in language acquisition.  more » « less
Award ID(s):
1734892 1754284 1749407
NSF-PAR ID:
10321962
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
11
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Speech processing is highly incremental. It is widely accepted that human listeners continuously use the linguistic context to anticipate upcoming concepts, words, and phonemes. However, previous evidence supports two seemingly contradictory models of how a predictive context is integrated with the bottom-up sensory input: Classic psycholinguistic paradigms suggest a two-stage process, in which acoustic input initially leads to local, context-independent representations, which are then quickly integrated with contextual constraints. This contrasts with the view that the brain constructs a single coherent, unified interpretation of the input, which fully integrates available information across representational hierarchies, and thus uses contextual constraints to modulate even the earliest sensory representations. To distinguish these hypotheses, we tested magnetoencephalography responses to continuous narrative speech for signatures of local and unified predictive models. Results provide evidence that listeners employ both types of models in parallel. Two local context models uniquely predict some part of early neural responses, one based on sublexical phoneme sequences, and one based on the phonemes in the current word alone; at the same time, even early responses to phonemes also reflect a unified model that incorporates sentence-level constraints to predict upcoming phonemes. Neural source localization places the anatomical origins of the different predictive models in nonidentical parts of the superior temporal lobes bilaterally, with the right hemisphere showing a relative preference for more local models. These results suggest that speech processing recruits both local and unified predictive models in parallel, reconciling previous disparate findings. Parallel models might make the perceptual system more robust, facilitate processing of unexpected inputs, and serve a function in language acquisition. MEG Data MEG data is in FIFF format and can be opened with MNE-Python. Data has been directly converted from the acquisition device native format without any preprocessing. Events contained in the data indicate the stimuli in numerical order. Subjects R2650 and R2652 heard stimulus 11b instead of 11. Predictor Variables The original audio files are copyrighted and cannot be shared, but the make_audio folder contains make_clips.py which can be used to extract the exact clips from the commercially available audiobook (ISBN 978-1480555280). The predictors directory contains all the predictors used in the original study as pickled eelbrain objects. They can be loaded in Python with the eelbrain.load.unpickle function. The TextGrids directory contains the TextGrids aligned to the audio files. Source Localization The localization.zip file contains files needed for source localization. Structural brain models used in the published analysis are reconstructed by scaling the FreeSurfer fsaverage brain (distributed with FreeSurfer) based on each subject's `MRI scaling parameters.cfg` file. This can be done using the `mne.scale_mri` function. Each subject's MEG folder contains a `subject-trans.fif` file which contains the coregistration between MEG sensor space and (scaled) MRI space, which is used to compute the forward solution. 
    more » « less
  2. Learning to process speech in a foreign language involves learning new representations for mapping the auditory signal to linguistic structure. Behavioral experiments suggest that even listeners that are highly proficient in a non-native language experience interference from representations of their native language. However, much of the evidence for such interference comes from tasks that may inadvertently increase the salience of native language competitors. Here we tested for neural evidence of proficiency and native language interference in a naturalistic story listening task. We studied electroencephalography responses of 39 native speakers of Dutch (14 male) to an English short story, spoken by a native speaker of either American English or Dutch. We modeled brain responses with multivariate temporal response functions, using acoustic and language models. We found evidence for activation of Dutch language statistics when listening to English, but only when it was spoken with a Dutch accent. This suggests that a naturalistic, monolingual setting decreases the interference from native language representations, whereas an accent in the listener's own native language may increase native language interference, by increasing the salience of the native language and activating native language phonetic and lexical representations. Brain responses suggest that such interference stems from words from the native language competing with the foreign language in a single word recognition system, rather than being activated in a parallel lexicon. We further found that secondary acoustic representations of speech (after 200 ms latency) decreased with increasing proficiency. This may reflect improved acoustic–phonetic models in more proficient listeners.

    Significance StatementBehavioral experiments suggest that native language knowledge interferes with foreign language listening, but such effects may be sensitive to task manipulations, as tasks that increase metalinguistic awareness may also increase native language interference. This highlights the need for studying non-native speech processing using naturalistic tasks. We measured neural responses unobtrusively while participants listened for comprehension and characterized the influence of proficiency at multiple levels of representation. We found that salience of the native language, as manipulated through speaker accent, affected activation of native language representations: significant evidence for activation of native language (Dutch) categories was only obtained when the speaker had a Dutch accent, whereas no significant interference was found to a speaker with a native (American) accent.

     
    more » « less
  3. Abstract

    Speech processing often occurs amid competing inputs from other modalities, for example, listening to the radio while driving. We examined the extent to which dividing attention between auditory and visual modalities (bimodal divided attention) impacts neural processing of natural continuous speech from acoustic to linguistic levels of representation. We recorded electroencephalographic (EEG) responses when human participants performed a challenging primary visual task, imposing low or high cognitive load while listening to audiobook stories as a secondary task. The two dual-task conditions were contrasted with an auditory single-task condition in which participants attended to stories while ignoring visual stimuli. Behaviorally, the high load dual-task condition was associated with lower speech comprehension accuracy relative to the other two conditions. We fitted multivariate temporal response function encoding models to predict EEG responses from acoustic and linguistic speech features at different representation levels, including auditory spectrograms and information-theoretic models of sublexical-, word-form-, and sentence-level representations. Neural tracking of most acoustic and linguistic features remained unchanged with increasing dual-task load, despite unambiguous behavioral and neural evidence of the high load dual-task condition being more demanding. Compared to the auditory single-task condition, dual-task conditions selectively reduced neural tracking of only some acoustic and linguistic features, mainly at latencies >200 ms, while earlier latencies were surprisingly unaffected. These findings indicate that behavioral effects of bimodal divided attention on continuous speech processing occur not because of impaired early sensory representations but likely at later cognitive processing stages. Crossmodal attention-related mechanisms may not be uniform across different speech processing levels.

     
    more » « less
  4. Listeners have many sources of information available in interpreting speech. Numerous theoretical frameworks and paradigms have established that various constraints impact the processing of speech sounds, but it remains unclear how listeners might simultane-ously consider multiple cues, especially those that differ qualitatively (i.e., with respect to timing and/or modality) or quantita-tively (i.e., with respect to cue reliability). Here, we establish that cross-modal identity priming can influence the interpretation of ambiguous phonemes (Exp. 1, N = 40) and show that two qualitatively distinct cues – namely, cross-modal identity priming and auditory co-articulatory context – have additive effects on phoneme identification (Exp. 2, N = 40). However, we find no effect of quantitative variation in a cue – specifically, changes in the reliability of the priming cue did not influence phoneme identification (Exp. 3a, N = 40; Exp. 3b, N = 40). Overall, we find that qualitatively distinct cues can additively influence phoneme identifica-tion. While many existing theoretical frameworks address constraint integration to some degree, our results provide a step towards understanding how information that differs in both timing and modality is integrated in online speech perception. 
    more » « less
  5. Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression usingtemporal response functions (TRFs) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception. Here, we introduce the Eelbrain Python toolkit, which makes this kind of analysis easy and accessible. We demonstrate its use, using continuous speech as a sample paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub repository provides the complete source code for the analysis, from raw data to group-level statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter specifies a hierarchy of time-continuous representations that are hypothesized to have contributed to brain responses, and uses those as predictor variables for the electrophysiological signal. This is analogous to a multiple regression problem, but with the addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses associated with the different predictor variables by estimating a multivariate TRF (mTRF), quantifying the influence of each predictor on brain responses as a function of time(-lags). This allows asking two questions about the predictor variables: (1) Is there a significant neural representation corresponding to this predictor variable? And if so, (2) what are the temporal characteristics of the neural response associated with it? Thus, different predictor variables can be systematically combined and evaluated to jointly model neural processing at multiple hierarchical levels. We discuss applications of this approach, including the potential for linking algorithmic/representational theories at different cognitive levels to brain responses through computational models with appropriate linking hypotheses. 
    more » « less