Title: Data from: Parallel processing in speech perception with local and global representations of linguistic context
Speech processing is highly incremental. It is widely accepted that human listeners continuously use the linguistic context to anticipate upcoming concepts, words, and phonemes. However, previous evidence supports two seemingly contradictory models of how a predictive context is integrated with the bottom-up sensory input: Classic psycholinguistic paradigms suggest a two-stage process, in which acoustic input initially leads to local, context-independent representations, which are then quickly integrated with contextual constraints. This contrasts with the view that the brain constructs a single coherent, unified interpretation of the input, which fully integrates available information across representational hierarchies, and thus uses contextual constraints to modulate even the earliest sensory representations. To distinguish these hypotheses, we tested magnetoencephalography responses to continuous narrative speech for signatures of local and unified predictive models. Results provide evidence that listeners employ both types of models in parallel. Two local context models uniquely predict some part of early neural responses, one based on sublexical phoneme sequences, and one based on the phonemes in the current word alone; at the same time, even early responses to phonemes also reflect a unified model that incorporates sentence-level constraints to predict upcoming phonemes. Neural source localization places the anatomical origins of the different predictive models in nonidentical parts of the superior temporal lobes bilaterally, with the right hemisphere showing a relative preference for more local models. These results suggest that speech processing recruits both local and unified predictive models in parallel, reconciling previous disparate findings. Parallel models might make the perceptual system more robust, facilitate processing of unexpected inputs, and serve a function in language acquisition. MEG Data MEG data is in FIFF format and can be opened with MNE-Python. Data has been directly converted from the acquisition device native format without any preprocessing. Events contained in the data indicate the stimuli in numerical order. Subjects R2650 and R2652 heard stimulus 11b instead of 11. Predictor Variables The original audio files are copyrighted and cannot be shared, but the make_audio folder contains make_clips.py which can be used to extract the exact clips from the commercially available audiobook (ISBN 978-1480555280). The predictors directory contains all the predictors used in the original study as pickled eelbrain objects. They can be loaded in Python with the eelbrain.load.unpickle function. The TextGrids directory contains the TextGrids aligned to the audio files. Source Localization The localization.zip file contains files needed for source localization. Structural brain models used in the published analysis are reconstructed by scaling the FreeSurfer fsaverage brain (distributed with FreeSurfer) based on each subject's `MRI scaling parameters.cfg` file. This can be done using the `mne.scale_mri` function. Each subject's MEG folder contains a `subject-trans.fif` file which contains the coregistration between MEG sensor space and (scaled) MRI space, which is used to compute the forward solution. more »« less
Brodbeck, Christian; Bhattasali, Shohini; Cruz Heredia, Aura AL; Resnik, Philip; Simon, Jonathan Z; Lau, Ellen
(, eLife)
Speech processing is highly incremental. It is widely accepted that human listeners continuously use the linguistic context to anticipate upcoming concepts, words, and phonemes. However, previous evidence supports two seemingly contradictory models of how a predictive context is integrated with the bottom-up sensory input: Classic psycholinguistic paradigms suggest a two-stage process, in which acoustic input initially leads to local, context-independent representations, which are then quickly integrated with contextual constraints. This contrasts with the view that the brain constructs a single coherent, unified interpretation of the input, which fully integrates available information across representational hierarchies, and thus uses contextual constraints to modulate even the earliest sensory representations. To distinguish these hypotheses, we tested magnetoencephalography responses to continuous narrative speech for signatures of local and unified predictive models. Results provide evidence that listeners employ both types of models in parallel. Two local context models uniquely predict some part of early neural responses, one based on sublexical phoneme sequences, and one based on the phonemes in the current word alone; at the same time, even early responses to phonemes also reflect a unified model that incorporates sentence-level constraints to predict upcoming phonemes. Neural source localization places the anatomical origins of the different predictive models in nonidentical parts of the superior temporal lobes bilaterally, with the right hemisphere showing a relative preference for more local models. These results suggest that speech processing recruits both local and unified predictive models in parallel, reconciling previous disparate findings. Parallel models might make the perceptual system more robust, facilitate processing of unexpected inputs, and serve a function in language acquisition.
{"Abstract":["Data files were used in support of the research paper titled \u201cMitigating RF Jamming Attacks at the Physical Layer with Machine Learning<\/em>" which has been submitted to the IET Communications journal.<\/p>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nAll data was collected using the SDR implementation shown here: https://github.com/mainland/dragonradio/tree/iet-paper. Particularly for antenna state selection, the files developed for this paper are located in 'dragonradio/scripts/:'<\/p>\n\n'ModeSelect.py': class used to defined the antenna state selection algorithm<\/li>'standalone-radio.py': SDR implementation for normal radio operation with reconfigurable antenna<\/li>'standalone-radio-tuning.py': SDR implementation for hyperparameter tunning<\/li>'standalone-radio-onmi.py': SDR implementation for omnidirectional mode only<\/li><\/ul>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nAuthors: Marko Jacovic, Xaime Rivas Rey, Geoffrey Mainland, Kapil R. Dandekar\nContact: krd26@drexel.edu<\/p>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nTop-level directories and content will be described below. Detailed descriptions of experiments performed are provided in the paper.<\/p>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nclassifier_training: files used for training classifiers that are integrated into SDR platform<\/p>\n\n'logs-8-18' directory contains OTA SDR collected log files for each jammer type and under normal operation (including congested and weaklink states)<\/li>'classTrain.py' is the main parser for training the classifiers<\/li>'trainedClassifiers' contains the output classifiers generated by 'classTrain.py'<\/li><\/ul>\n\npost_processing_classifier: contains logs of online classifier outputs and processing script<\/p>\n\n'class' directory contains .csv logs of each RTE and OTA experiment for each jamming and operation scenario<\/li>'classProcess.py' parses the log files and provides classification report and confusion matrix for each multi-class and binary classifiers for each observed scenario - found in 'results->classifier_performance'<\/li><\/ul>\n\npost_processing_mgen: contains MGEN receiver logs and parser<\/p>\n\n'configs' contains JSON files to be used with parser for each experiment<\/li>'mgenLogs' contains MGEN receiver logs for each OTA and RTE experiment described. Within each experiment logs are separated by 'mit' for mitigation used, 'nj' for no jammer, and 'noMit' for no mitigation technique used. File names take the form *_cj_* for constant jammer, *_pj_* for periodic jammer, *_rj_* for reactive jammer, and *_nj_* for no jammer. Performance figures are found in 'results->mitigation_performance'<\/li><\/ul>\n\nray_tracing_emulation: contains files related to Drexel area, Art Museum, and UAV Drexel area validation RTE studies.<\/p>\n\nDirectory contains detailed 'readme.txt' for understanding.<\/li>Please note: the processing files and data logs present in 'validation' folder were developed by Wolfe et al. and should be cited as such, unless explicitly stated differently. \n\tS. Wolfe, S. Begashaw, Y. Liu and K. R. Dandekar, "Adaptive Link Optimization for 802.11 UAV Uplink Using a Reconfigurable Antenna," MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM), 2018, pp. 1-6, doi: 10.1109/MILCOM.2018.8599696.<\/li><\/ul>\n\t<\/li><\/ul>\n\nresults: contains results obtained from study<\/p>\n\n'classifier_performance' contains .txt files summarizing binary and multi-class performance of online SDR system. Files obtained using 'post_processing_classifier.'<\/li>'mitigation_performance' contains figures generated by 'post_processing_mgen.'<\/li>'validation' contains RTE and OTA performance comparison obtained by 'ray_tracing_emulation->validation->matlab->outdoor_hover_plots.m'<\/li><\/ul>\n\ntuning_parameter_study: contains the OTA log files for antenna state selection hyperparameter study<\/p>\n\n'dataCollect' contains a folder for each jammer considered in the study, and inside each folder there is a CSV file corresponding to a different configuration of the learning parameters of the reconfigurable antenna. The configuration selected was the one that performed the best across all these experiments and is described in the paper.<\/li>'data_summary.txt'this file contains the summaries from all the CSV files for convenience.<\/li><\/ul>"]}
Mask-based integrated fluorescence microscopy is a compact imaging technique for biomedical research. It can perform snapshot 3D imaging through a thin optical mask with a scalable field of view (FOV) and a thin device thickness. Integrated microscopy uses computational algorithms for object reconstruction, but efficient reconstruction algorithms for large-scale data have been lacking. Here, we developed DeepInMiniscope, a miniaturized integrated microscope featuring a custom-designed optical mask and a multi-stage physics-informed deep learning model. This reduces the computational resource demands by orders of magnitude and facilitates fast reconstruction. Our deep learning algorithm can reconstruct object volumes over 4×6×0.6 mm3. We demonstrated substantial improvement in both reconstruction quality and speed compared to traditional methods for large-scale data. Notably, we imaged neuronal activity with near-cellular resolution in awake mouse cortex, representing a substantial leap over existing integrated microscopes. DeepInMiniscope holds great promise for scalable, large-FOV, high-speed, 3D imaging applications with compact device footprint. # DeepInMiniscope: Deep-learning-powered physics-informed integrated miniscope [https://doi.org/10.5061/dryad.6t1g1jx83](https://doi.org/10.5061/dryad.6t1g1jx83) ## Description of the data and file structure ### DeepInMiniscope: Learned Integrated Miniscope ### Datasets, models and codes for 2D and 3D sample reconstructions. Dataset for 2D reconstruction includes test data for green stained lens tissue. Input: measured images of green fluorescent stained lens tissue, dissembled into sub-FOV patches. Output: the slide containing green lens tissue features. Dataset for 3D sample reconstructions includes test data for 3D reconstruction of in-vivo mouse brain video recording. Input: Time-series standard-derivation of difference-to-local-mean weighted raw video. Output: reconstructed 4-D volumetric video containing a 3-dimensional distribution of neural activities. ## Files and variables ### Download data, code, and sample results 1. Download data `data.zip`, code `code.zip`, results `results.zip`. 2. Unzip the downloaded files and place them in the same main folder. 3. Confirm that the main folder contains three subfolders: `data`, `code`, and `results`. Inside the `data` and `code` folder, there should be subfolders for each test case. ## Data 2D_lenstissue **data_2d_lenstissue.mat:** Measured images of green fluorescent stained lens tissue, disassembled into sub-FOV patches. * **Xt:** stacked 108 FOVs of measured image, each centered at one microlens unit with 720 x 720 pixels. Data dimension in order of (batch, height, width, FOV). * **Yt:** placeholder variable for reconstructed object, each centered at corresponding microlens unit, with 180 x 180 voxels. Data dimension in order of (batch, height, width, FOV). **reconM_0308:** Trained Multi-FOV ADMM-Net model for 2D lens tissue reconstruction. **gen_lenstissue.mat:** Generated lens tissue reconstruction by running the model with code **2D_lenstissue.py** * **generated_images:** stacked 108 reconstructed FOVs of lens tissue sample by multi-FOV ADMM-Net, the assembled full sample reconstruction is shown in results/2D_lenstissue_reconstruction.png 3D_mouse **reconM_g704_z5_v4:** Trained 3D Multi-FOV ADMM-Net model for 3D sample reconstructions **t_img_recd_video0003 24-04-04 18-31-11_abetterrecordlong_03560_1_290.mat:** Time-series standard-deviation of difference-to-local-mean weighted raw video. * **Xts:** test video with 290 frames and each frame 6 FOVs, with 1408 x 1408 pixels per FOV. Data dimension in order of (frames, height, width, FOV). **gen_img_recd_video0003 24-04-04 18-31-11_abetterrecordlong_03560_1_290_v4.mat:** Generated 4D volumetric video containing 3-dimensional distribution of neural activities. * **generated_images_fu:** frame-by-frame 3D reconstruction of recorded video in uint8 format. Data dimension in order of (batch, FOV, height, width, depth). Each frame contains 6 FOVs, and each FOV has 13 reconstruction depths with 416 x 416 voxels per depth. Variables inside saved model subfolders (reconM_0308 and reconM_g704_z5_v4): * **saved_model.pb:** model computation graph including architecture and input/output definitions. * **keras_metadata.pb:** Keras metadata for the saved model, including model class, training configuration, and custom objects. * **assets:** external files for custom assets loaded during model training/inference. This folder is empty, as the model does not use custom assets. * **variables.data-00000-of-00001:** numerical values of model weights and parameters. * **variables.index:** index file that maps variable names to weight locations in .data. ## Code/software ### Set up the Python environment 1. Download and install the [Anaconda distribution](https://www.anaconda.com/download). 2. The code was tested with the following packages * python=3.9.7 * tensorflow=2.7.0 * keras=2.7.0 * matplotlib=3.4.3 * scipy=1.7.1 ## Code **2D_lenstissue.py:** Python code for Multi-FOV ADMM-Net model to generate reconstruction results. The function of each script section is described at the beginning of each section. **lenstissue_2D.m:** Matlab code to display the generated image and reassemble sub-FOV patches. **sup_psf.m:** Matlab script to load microlens coordinates data and to generate PSF pattern. **lenscoordinates.xls:** Microlens units coordinates table. **3D mouse.py:** Python code for Multi-FOV ADMM-Net model to generate reconstruction results. The function of each script section is described at the beginning of each section. **mouse_3D.m:** Matlab code to display the reconstructed neural activity video and to calculate temporal correlation. ## Access information Other publicly accessible locations of the data: * [https://github.com/Yang-Research-Laboratory/DeepInMiniscope-Learned-Integrated-Miniscope](https://github.com/Yang-Research-Laboratory/DeepInMiniscope-Learned-Integrated-Miniscope)
{"Abstract":["Data files were used in support of the research paper titled "\u201cExperimentation Framework for Wireless\nCommunication Systems under Jamming Scenarios" which has been submitted to the IET Cyber-Physical Systems: Theory & Applications journal. <\/p>\n\nAuthors: Marko Jacovic, Michael J. Liston, Vasil Pano, Geoffrey Mainland, Kapil R. Dandekar\nContact: krd26@drexel.edu<\/p>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nTop-level directories correspond to the case studies discussed in the paper. Each includes the sub-directories: logs, parsers, rayTracingEmulation, results. <\/p>\n\n--------------------------------<\/p>\n\nlogs: - data logs collected from devices under test\n - 'defenseInfrastucture' contains console output from a WARP 802.11 reference design network. Filename structure follows '*x*dB_*y*.txt' in which *x* is the reactive jamming power level and *y* is the jaming duration in samples (100k samples = 1 ms). 'noJammer.txt' does not include the jammer and is a base-line case. 'outMedian.txt' contains the median statistics for log files collected prior to the inclusion of the calculation in the processing script. \n - 'uavCommunication' contains MGEN logs at each receiver for cases using omni-directional and RALA antennas with a 10 dB constant jammer and without the jammer. Omni-directional folder contains multiple repeated experiments to provide reliable results during each calculation window. RALA directories use s*N* folders in which *N* represents each antenna state. \n - 'vehicularTechnologies' contains MGEN logs at the car receiver for different scenarios. 'rxNj_5rep.drc' does not consider jammers present, 'rx33J_5rep.drc' introduces the periodic jammer, in 'rx33jSched_5rep.drc' the device under test uses time scheduling around the periodic jammer, in 'rx33JSchedRandom_5rep.drc' the same modified time schedule is used with a random jammer. <\/p>\n\n--------------------------------<\/p>\n\nparsers: - scripts used to collect or process the log files used in the study\n - 'defenseInfrastructure' contains the 'xputFiveNodes.py' script which is used to control and log the throughput of a 5-node WARP 802.11 reference design network. Log files are manually inspected to generate results (end of log file provides a summary). \n - 'uavCommunication' contains a 'readMe.txt' file which describes the parsing of the MGEN logs using TRPR. TRPR must be installed to run the scripts and directory locations must be updated. \n - 'vehicularTechnologies' contains the 'mgenParser.py' script and supporting 'bfb.json' configuration file which also require TRPR to be installed and directories to be updated. <\/p>\n\n--------------------------------<\/p>\n\nrayTracingEmulation: - 'wirelessInsiteImages': images of model used in Wireless Insite\n - 'channelSummary.pdf': summary of channel statistics from ray-tracing study\n - 'rawScenario': scenario files resulting from code base directly from ray-tracing output based on configuration defined by '*WI.json' file \n - 'processedScenario': pre-processed scenario file to be used by DYSE channel emulator based on configuration defined by '*DYSE.json' file, applies fixed attenuation measured externally by spectrum analyzer and additional transmit power per node if desired\n - DYSE scenario file format: time stamp (milli seconds), receiver ID, transmitter ID, main path gain (dB), main path phase (radians), main path delay (micro seconds), Doppler shift (Hz), multipath 1 gain (dB), multipath 1 phase (radians), multipath 1 delay relative to main path delay (micro seconds), multipath 2 gain (dB), multipath 2 phase (radians), multipath 2 delay relative to main path delay (micro seconds)\n - 'nodeMapping.txt': mapping of Wireless Insite transceivers to DYSE channel emulator physical connections required\n - 'uavCommunication' directory additionally includes 'antennaPattern' which contains the RALA pattern data for the omni-directional mode ('omni.csv') and directional state ('90.csv')<\/p>\n\n--------------------------------<\/p>\n\nresults: - contains performance results used in paper based on parsing of aforementioned log files\n <\/p>"]}
Garousi-Nejad, Irene; Tarboton, David
(, HydroShare)
This resource includes Jupyter Notebooks that combine (merge) model results with observations. There are four folders: - NWM_SnowAssessment: This folder includes codes required for combining model results with observations. It also has an output folder that contains outputs of running five Jupyter Notebooks within the code folder. The order to run the Jupyter Notebooks is as follows. First run Combine_obs_mod_[*].ipynb where [*] is P (precipitation), SWE (snow water equivalent), TAir (air temperature), and FSNO (snow covered area fraction). This combines the model outputs and observations for each variable. Then, run Combine_obs_mod_P_SWE_TAir_FSNO.ipynb. - NWM_Reanalysis: This folder contains the National Water Model version 2 retrospective simulations that were retrieved and pre-processed at SNOTEL sites using https://doi.org/10.4211/hs.3d4976bf6eb84dfbbe11446ab0e31a0a and https://doi.org/10.4211/hs.1b66a752b0cc467eb0f46bda5fdc4b34. - SNOTEL: This folder contains preprocessed SNOTEL observations that were created using https://doi.org/10.4211/hs.d1fe0668734e4892b066f198c4015b06. - GEE: This folder contains MODIS observations that we downloaded using https://doi.org/10.4211/hs.d287f010b2dd48edb0573415a56d47f8. Note that the existing CSV file is the merged file of the downloaded CSV files.
Brodbeck, Christian, Bhattasali, Shohini, Cruz Heredia, Aura A., Resnik, Philip, Simon, Jonathan Z., and Lau, Ellen. Data from: Parallel processing in speech perception with local and global representations of linguistic context. Web. doi:10.5061/dryad.nvx0k6dv0.
Brodbeck, Christian, Bhattasali, Shohini, Cruz Heredia, Aura A., Resnik, Philip, Simon, Jonathan Z., & Lau, Ellen. Data from: Parallel processing in speech perception with local and global representations of linguistic context. https://doi.org/10.5061/dryad.nvx0k6dv0
Brodbeck, Christian, Bhattasali, Shohini, Cruz Heredia, Aura A., Resnik, Philip, Simon, Jonathan Z., and Lau, Ellen.
"Data from: Parallel processing in speech perception with local and global representations of linguistic context". Country unknown/Code not available: Dryad. https://doi.org/10.5061/dryad.nvx0k6dv0.https://par.nsf.gov/biblio/10340192.
@article{osti_10340192,
place = {Country unknown/Code not available},
title = {Data from: Parallel processing in speech perception with local and global representations of linguistic context},
url = {https://par.nsf.gov/biblio/10340192},
DOI = {10.5061/dryad.nvx0k6dv0},
abstractNote = {{"Abstract":["Speech processing is highly incremental. It is widely accepted that human\n listeners continuously use the linguistic context to anticipate upcoming\n concepts, words, and phonemes. However, previous evidence supports two\n seemingly contradictory models of how a predictive context is integrated\n with the bottom-up sensory input: Classic psycholinguistic paradigms\n suggest a two-stage process, in which acoustic input initially leads to\n local, context-independent representations, which are then quickly\n integrated with contextual constraints. This contrasts with the view that\n the brain constructs a single coherent, unified interpretation of the\n input, which fully integrates available information across\n representational hierarchies, and thus uses contextual constraints to\n modulate even the earliest sensory representations. To distinguish these\n hypotheses, we tested magnetoencephalography responses to continuous\n narrative speech for signatures of local and unified predictive models.\n Results provide evidence that listeners employ both types of models in\n parallel. Two local context models uniquely predict some part of early\n neural responses, one based on sublexical phoneme sequences, and one based\n on the phonemes in the current word alone; at the same time, even early\n responses to phonemes also reflect a unified model that incorporates\n sentence-level constraints to predict upcoming phonemes. Neural source\n localization places the anatomical origins of the different predictive\n models in nonidentical parts of the superior temporal lobes bilaterally,\n with the right hemisphere showing a relative preference for more local\n models. These results suggest that speech processing recruits both local\n and unified predictive models in parallel, reconciling previous disparate\n findings. Parallel models might make the perceptual system more robust,\n facilitate processing of unexpected inputs, and serve a function in\n language acquisition."],"Other":["MEG Data MEG data is in FIFF format and can be opened with MNE-Python.\n Data has been directly converted from the acquisition device native format\n without any preprocessing. Events contained in the data indicate the\n stimuli in numerical order. Subjects R2650 and R2652 heard stimulus 11b\n instead of 11. Predictor Variables The original audio files are\n copyrighted and cannot be shared, but the make_audio folder contains\n make_clips.py which can be used to extract the exact clips from the\n commercially available audiobook (ISBN 978-1480555280). The predictors\n directory contains all the predictors used in the original study as\n pickled eelbrain objects. They can be loaded in Python with the\n eelbrain.load.unpickle function. The TextGrids directory contains the\n TextGrids aligned to the audio files. Source Localization The\n localization.zip file contains files needed for source localization.\n Structural brain models used in the published analysis are reconstructed\n by scaling the FreeSurfer fsaverage brain (distributed with FreeSurfer)\n based on each subject's `MRI scaling parameters.cfg` file. This can\n be done using the `mne.scale_mri` function. Each subject's MEG folder\n contains a `subject-trans.fif` file which contains the coregistration\n between MEG sensor space and (scaled) MRI space, which is used to compute\n the forward solution."]}},
journal = {},
publisher = {Dryad},
author = {Brodbeck, Christian and Bhattasali, Shohini and Cruz Heredia, Aura A. and Resnik, Philip and Simon, Jonathan Z. and Lau, Ellen},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.