skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A tomato LATERAL ORGAN BOUNDARIES transcription factor, SlLOB1 , predominantly regulates cell wall and softening components of ripening
Fruit softening is a key component of the irreversible ripening program, contributing to the palatability necessary for frugivore-mediated seed dispersal. The underlying textural changes are complex and result from cell wall remodeling and changes in both cell adhesion and turgor. While a number of transcription factors (TFs) that regulate ripening have been identified, these affect most canonical ripening-related physiological processes. Here, we show that a tomato fruit ripening–specific LATERAL ORGAN BOUNDRIES ( LOB ) TF, SlLOB1 , up-regulates a suite of cell wall–associated genes during late maturation and ripening of locule and pericarp tissues. SlLOB1 repression in transgenic fruit impedes softening, while overexpression throughout the plant under the direction of the 35s promoter confers precocious induction of cell wall gene expression and premature softening. Transcript and protein levels of the wall-loosening protein EXPANSIN1 ( EXP1 ) are strongly suppressed in Sl LOB1 RNA interference lines, while EXP1 is induced in Sl LOB1 -overexpressing transgenic leaves and fruit. In contrast to the role of ethylene and previously characterized ripening TFs, which are comprehensive facilitators of ripening phenomena including softening, Sl LOB1 participates in a regulatory subcircuit predominant to cell wall dynamics and softening.  more » « less
Award ID(s):
1855585
PAR ID:
10321981
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
33
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY The unique flavors of different fruits depend upon complex blends of soluble sugars, organic acids, and volatile organic compounds. 2‐Phenylethanol and phenylacetaldehyde are major contributors to flavor in many foods, including tomato. In the tomato fruit, glucose, and fructose are the chemicals that most positively contribute to human flavor preferences. We identified a gene encoding a tomato aldo/keto reductase,Sl‐AKR9, that is associated with phenylacetaldehyde and 2‐phenylethanol contents in fruits. Two distinct haplotypes were identified; one encodes a chloroplast‐targeted protein while the other encodes a transit peptide‐less protein that accumulates in the cytoplasm. Sl‐AKR9 effectively catalyzes reduction of phenylacetaldehyde to 2‐phenylethanol. The enzyme can also metabolize sugar‐derived reactive carbonyls, including glyceraldehyde and methylglyoxal. CRISPR‐Cas9‐induced loss‐of‐function mutations inSl‐AKR9significantly increased phenylacetaldehyde and lowered 2‐phenylethanol content in ripe fruit. Reduced fruit weight and increased soluble solids, glucose, and fructose contents were observed in the loss‐of‐function fruits. These results reveal a previously unidentified mechanism affecting two flavor‐associated phenylalanine‐derived volatile organic compounds, sugar content, and fruit weight. Modern varieties of tomato almost universally contain the haplotype associated with larger fruit, lower sugar content, and lower phenylacetaldehyde and 2‐phenylethanol, likely leading to flavor deterioration in modern varieties. 
    more » « less
  2. Abstract Bananas' mechanical properties are affected by the ripening and the drying processes since they induce profound microstructural changes. In this study, first, the interacting effect of the ripening and the drying processes on the mode of viscoelastic behavior of bananas was investigated. Second, the stress relaxation properties of fully ripe bananas were measured as a function of the hot air drying conditions. Finally, the two‐element generalized Maxwell model was fitted to the experimental data. Thus, this study clarified the dependence of the mode of rheological behavior on both the ripening stage and the moisture content. It showed that bananas start softening at the onset of the drying when the fruit moisture content is high. The softening is reversed at a critical value, at which the bananas start regaining stiffness with further moisture reduction. The critical moisture content value decreases with ripening from 1.4 g/g solids for green bananas (5–11% Brix percentage) to 1.23 g/g solids for half‐ripe bananas (15–20% Brix percentage) and eventually vanishes when the bananas are fully ripe (25–31% Brix percentage). The stress relaxation properties measured with fully ripe bananas substantiated the initial findings on the influence of the ripening stage on the mode of rheological behavior. The relaxation moduli displayed a decreasing trend with decrease in the moisture content for 40, 60, and 80°C drying temperatures and decayed with time as expected for viscoelastic bodies. Lastly, the two‐element generalized Maxwell model fitted well to the experimental data with the root mean square error varying between 0.06 × 10−5and 90.6 × 10−5MPa. 
    more » « less
  3. Abstract Ripening is crucial for the development of fleshy fruits that release their seeds following consumption by frugivores and are important contributors to human health and nutritional security. Many genetic ripening regulators have been identified, especially in the model system tomato, yet more remain to be discovered and integrated into comprehensive regulatory models. Most tomato ripening genes have been studied in pericarp tissue, though recent evidence indicates that locule tissue is a site of early ripening-gene activities. Here we identified and functionally characterized an Ethylene Response Factor gene,SlERF.D6, by investigating tomato transcriptome data throughout plant development, emphasizing genes elevated in the locule during fruit development and ripening.SlERF.D6loss-of-function mutants resulting from CRISPR/Cas9 gene editing delayed ripening initiation and carotenoid accumulation in both pericarp and locule tissues. Transcriptome analysis of lines altered inSlERF.D6expression revealed multiple classes of altered genes including ripening regulators, in addition to carotenoid, cell wall and ethylene pathway genes, suggesting comprehensive ripening control. Distinct regulatory patterns in pericarp versus locule tissues were observed indicating tissue-specific activity of this transcription factor. Analysis of SlERF.D6 interaction with target promoters revealed an AP2/ERF transcription factor(SlDEAR2) as a target of SlERF.D6. Furthermore, we show that a third transcription factor gene,SlTCP12, is a target of SlDEAR2, presenting a tri-component module of ripening control. 
    more » « less
  4. Plant organs and tissues are comprised of an array of cell types often superimposed on a gradient of developmental stages. As a result, the ability to analyze and understand the synthesis, metabolism, and accumulation of plant biomolecules requires improved methods for cell- and tissue-specific analysis. Tomato (Solanum lycopersicum) is the world’s most valuable fruit crop and is an important source of health-promoting dietary compounds, including carotenoids. Furthermore, tomato possesses unique genetic activities at the cell and tissue levels, making it an ideal system for tissue- and cell-type analysis of important biochemicals. A sample preparation workflow was developed for cell-type-specific carotenoid analysis in tomato fruit samples. Protocols for hyperspectral imaging of tomato fruit samples, cryoembedding and sectioning of pericarp tissue, laser microdissection of specific cell types, metabolite extraction using cell wall digestion enzymes and pressure cycling, and carotenoid quantification by supercritical fluid chromatography were optimized and integrated into a working protocol. The workflow was applied to quantify carotenoids in the cuticle and noncuticle component of the tomato pericarp during fruit development from the initial ripening to full ripe stages. Carotenoids were extracted and quantified from cell volumes less than 10 nL. This workflow for cell-type-specific metabolite extraction and quantification can be adapted for the analysis of diverse metabolites, cell types, and organisms 
    more » « less
  5. Tomato ( Solanum lycopersicum ) produces a wide range of volatile chemicals during fruit ripening, generating a distinct aroma and contributing to the overall flavor. Among these volatiles are several aromatic and aliphatic nitrogen-containing compounds for which the biosynthetic pathways are not known. While nitrogenous volatiles are abundant in tomato fruit, their content in fruits of the closely related species of the tomato clade is highly variable. For example, the green-fruited species Solanum pennellii are nearly devoid, while the red-fruited species S. lycopersicum and Solanum pimpinellifolium accumulate high amounts. Using an introgression population derived from S. pennellii , we identified a locus essential for the production of all the detectable nitrogenous volatiles in tomato fruit. Silencing of the underlying gene ( SlTNH1 ; Solyc12g013690 ) in transgenic plants abolished production of aliphatic and aromatic nitrogenous volatiles in ripe fruit, and metabolomic analysis of these fruit revealed the accumulation of 2-isobutyl-tetrahydrothiazolidine-4-carboxylic acid, a known conjugate of cysteine and 3-methylbutanal. Biosynthetic incorporation of stable isotope-labeled precursors into 2-isobutylthiazole and 2-phenylacetonitrile confirmed that cysteine provides the nitrogen atom for all nitrogenous volatiles in tomato fruit. Nicotiana benthamiana plants expressing SlTNH1 readily transformed synthetic 2-substituted tetrahydrothiazolidine-4-carboxylic acid substrates into a mixture of the corresponding 2-substituted oxime, nitro, and nitrile volatiles. Distinct from other known flavin-dependent monooxygenase enzymes in plants, this tetrahydrothiazolidine-4-carboxylic acid N -hydroxylase catalyzes sequential hydroxylations. Elucidation of this pathway is a major step forward in understanding and ultimately improving tomato flavor quality. 
    more » « less