Fruit softening is a key component of the irreversible ripening program, contributing to the palatability necessary for frugivore-mediated seed dispersal. The underlying textural changes are complex and result from cell wall remodeling and changes in both cell adhesion and turgor. While a number of transcription factors (TFs) that regulate ripening have been identified, these affect most canonical ripening-related physiological processes. Here, we show that a tomato fruit ripening–specific LATERAL ORGAN BOUNDRIES ( LOB ) TF, SlLOB1 , up-regulates a suite of cell wall–associated genes during late maturation and ripening of locule and pericarp tissues. SlLOB1 repression in transgenic fruit impedes softening, while overexpression throughout the plant under the direction of the 35s promoter confers precocious induction of cell wall gene expression and premature softening. Transcript and protein levels of the wall-loosening protein EXPANSIN1 ( EXP1 ) are strongly suppressed in Sl LOB1 RNA interference lines, while EXP1 is induced in Sl LOB1 -overexpressing transgenic leaves and fruit. In contrast to the role of ethylene and previously characterized ripening TFs, which are comprehensive facilitators of ripening phenomena including softening, Sl LOB1 participates in a regulatory subcircuit predominant to cell wall dynamics and softening. 
                        more » 
                        « less   
                    
                            
                            Ethylene Response Factor SlERF.D6 promotes ripening initiation and ethylene response through downstream transcription factors SlDEAR2 and SlTCP12
                        
                    
    
            Abstract Ripening is crucial for the development of fleshy fruits that release their seeds following consumption by frugivores and are important contributors to human health and nutritional security. Many genetic ripening regulators have been identified, especially in the model system tomato, yet more remain to be discovered and integrated into comprehensive regulatory models. Most tomato ripening genes have been studied in pericarp tissue, though recent evidence indicates that locule tissue is a site of early ripening-gene activities. Here we identified and functionally characterized an Ethylene Response Factor gene,SlERF.D6, by investigating tomato transcriptome data throughout plant development, emphasizing genes elevated in the locule during fruit development and ripening.SlERF.D6loss-of-function mutants resulting from CRISPR/Cas9 gene editing delayed ripening initiation and carotenoid accumulation in both pericarp and locule tissues. Transcriptome analysis of lines altered inSlERF.D6expression revealed multiple classes of altered genes including ripening regulators, in addition to carotenoid, cell wall and ethylene pathway genes, suggesting comprehensive ripening control. Distinct regulatory patterns in pericarp versus locule tissues were observed indicating tissue-specific activity of this transcription factor. Analysis of SlERF.D6 interaction with target promoters revealed an AP2/ERF transcription factor(SlDEAR2) as a target of SlERF.D6. Furthermore, we show that a third transcription factor gene,SlTCP12, is a target of SlDEAR2, presenting a tri-component module of ripening control. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1855585
- PAR ID:
- 10519365
- Publisher / Repository:
- Research Square
- Date Published:
- Format(s):
- Medium: X
- Institution:
- Research Square
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Capsicum chinense (habanero pepper) exhibits substantial variation in fruit pungency, color, and flavor due to its rich secondary metabolite composition, including capsaicinoids, carotenoids, and volatile organic compounds (VOCs). To dissect the genetic and regulatory basis of these traits, we conducted an integrative analysis across 244 diverse accessions using metabolite profiling, genome-wide association studies (GWAS), and transcriptome-wide association studies (TWAS). GWAS identified 507 SNPs for capsaicinoids, 304 for carotenoids, and 1176 for VOCs, while TWAS linked gene expression to metabolite levels, highlighting biosynthetic and regulatory genes in phenylpropanoid, fatty acid, and terpenoid pathways. Segmental RNA sequencing across fruit tissues of contrasting accessions revealed 7034 differentially expressed genes, including MYB31, 3-ketoacyl-CoA synthase, phytoene synthase, and ABC transporters. Notably, AP2 transcription factors and Pentatrichopeptide repeat (PPR) emerged as central regulators, co-expressed with carotenoid and VOC biosynthetic genes. High-resolution spatial transcriptomics (Stereo-seq) identified 74 genes with tissue-specific expression that overlap with GWAS and TWAS loci, reinforcing their regulatory relevance. To validate these candidates, we employed CRISPR/Cas9 to knock out AP2 and PPR genes in tomato. Widely targeted metabolomics and carotenoid profiling revealed major metabolic shifts: AP2 mutants accumulated higher levels of β-carotene and lycopene. In contrast, PPR mutants altered xanthophyll ester and apocarotenoid levels, supporting their roles in carotenoid flux and remodeling. This study provides the first integrative GWAS–TWAS–spatial transcriptomics in C. chinense, revealing key regulators of fruit quality traits. These findings lay the groundwork for precision breeding and metabolic engineering to enhance nutritional and sensory attributes in peppers.more » « less
- 
            Summary Tomato (Solanum lycopersicum) fruit ripening is regulated co‐operatively by the action of ethylene and a hierarchy of transcription factors, includingRIPENING INHIBITOR(RIN) andNON‐RIPENING(NOR). Mutations in these two genes have been adopted commercially to delay ripening, and accompanying textural deterioration, as a means to prolong shelf life. However, these mutations also affect desirable traits associated with colour and nutritional value, although the extent of this trade‐off has not been assessed in detail. Here, we evaluated changes in tomato fruit pericarp primary metabolite and carotenoid pigment profiles, as well as the dynamics of specific associated transcripts, in therinandnormutants during late development and postharvest storage, as well of those of the partially ripeningdelayed fruit ripening(dfd) tomato genotype. These profiles were compared with those of the wild‐type tomato cultivars Ailsa Craig (AC) and M82. We also evaluated the metabolic composition of M82 fruit ripened on or off the vine over a similar period. In general, thedfdmutation resulted in prolonged firmness and maintenance of quality traits without compromising key metabolites (sucrose, glucose/fructose and glucose) and sectors of intermediary metabolism, including tricarboxylic acid cycle intermediates. Our analysis also provided insights into the regulation of carotenoid formation and highlighted the importance of the polyamine, putrescine, in extending fruit shelf life. Finally, the metabolic composition analysis of M82 fruit ripened on or off the vine provided insights into the import into fruit of compounds, such as sucrose, during ripening.more » « less
- 
            Plant organs and tissues are comprised of an array of cell types often superimposed on a gradient of developmental stages. As a result, the ability to analyze and understand the synthesis, metabolism, and accumulation of plant biomolecules requires improved methods for cell- and tissue-specific analysis. Tomato (Solanum lycopersicum) is the world’s most valuable fruit crop and is an important source of health-promoting dietary compounds, including carotenoids. Furthermore, tomato possesses unique genetic activities at the cell and tissue levels, making it an ideal system for tissue- and cell-type analysis of important biochemicals. A sample preparation workflow was developed for cell-type-specific carotenoid analysis in tomato fruit samples. Protocols for hyperspectral imaging of tomato fruit samples, cryoembedding and sectioning of pericarp tissue, laser microdissection of specific cell types, metabolite extraction using cell wall digestion enzymes and pressure cycling, and carotenoid quantification by supercritical fluid chromatography were optimized and integrated into a working protocol. The workflow was applied to quantify carotenoids in the cuticle and noncuticle component of the tomato pericarp during fruit development from the initial ripening to full ripe stages. Carotenoids were extracted and quantified from cell volumes less than 10 nL. This workflow for cell-type-specific metabolite extraction and quantification can be adapted for the analysis of diverse metabolites, cell types, and organismsmore » « less
- 
            Abstract Water availability influences all aspects of plant growth and development; however, most studies of plant responses to drought have focused on vegetative organs, notably roots and leaves. Far less is known about the molecular bases of drought acclimation responses in fruits, which are complex organs with distinct tissue types. To obtain a more comprehensive picture of the molecular mechanisms governing fruit development under drought, we profiled the transcriptomes of a spectrum of fruit tissues from tomato (Solanum lycopersicum), spanning early growth through ripening and collected from plants grown under varying intensities of water stress. In addition, we compared transcriptional changes in fruit with those in leaves to highlight different and conserved transcriptome signatures in vegetative and reproductive organs. We observed extensive and diverse genetic reprogramming in different fruit tissues and leaves, each associated with a unique response to drought acclimation. These included major transcriptional shifts in the placenta of growing fruit and in the seeds of ripe fruit related to cell growth and epigenetic regulation, respectively. Changes in metabolic and hormonal pathways, such as those related to starch, carotenoids, jasmonic acid, and ethylene metabolism, were associated with distinct fruit tissues and developmental stages. Gene coexpression network analysis provided further insights into the tissue-specific regulation of distinct responses to water stress. Our data highlight the spatiotemporal specificity of drought responses in tomato fruit and indicate known and unrevealed molecular regulatory mechanisms involved in drought acclimation, during both vegetative and reproductive stages of development.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    