skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Machine Learning of Single Cell Transcriptomic Data From anti-PD-1 Responders and Non-responders Reveals Distinct Resistance Mechanisms in Skin Cancers and PDAC
Immune checkpoint therapies such as PD-1 blockade have vastly improved the treatment of numerous cancers, including basal cell carcinoma (BCC). However, patients afflicted with pancreatic ductal carcinoma (PDAC), one of the deadliest malignancies, overwhelmingly exhibit negative responses to checkpoint therapy. We sought to combine data analysis and machine learning to differentiate the putative mechanisms of BCC and PDAC non-response. We discover that increased MHC-I expression in malignant cells and suppression of MHC and PD-1/PD-L expression in CD8 + T cells is associated with nonresponse to treatment. Furthermore, we leverage machine learning to predict response to PD-1 blockade on a cellular level. We confirm divergent resistance mechanisms between BCC, PDAC, and melanoma and highlight the potential for rapid and affordable testing of gene expression in BCC patients to accurately predict response to checkpoint therapies. Our findings present an optimistic outlook for the use of quantitative cross-cancer analyses in characterizing immune responses and predicting immunotherapy outcomes.  more » « less
Award ID(s):
1763272
PAR ID:
10322224
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Genetics
Volume:
12
ISSN:
1664-8021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The advent of immune checkpoint therapy for metastatic skin cancer has greatly improved patient survival. However, most skin cancer patients are refractory to checkpoint therapy, and furthermore, the intra-immune cell signaling driving response to checkpoint therapy remains uncharacterized. When comparing the immune transcriptome in the tumor microenvironment of melanoma and basal cell carcinoma (BCC), we found that the presence of memory B cells and macrophages negatively correlate in both cancers when stratifying patients by their response, with memory B cells more present in responders. Moreover, inhibitory immune signaling mostly decreases in melanoma responders and increases in BCC responders. We further explored the relationships between macrophages, B cells and response to checkpoint therapy by developing a stochastic differential equation model which qualitatively agrees with the data analysis. Our model predicts BCC to be more refractory to checkpoint therapy than melanoma and predicts the best qualitative ratio of memory B cells and macrophages for successful treatment. 
    more » « less
  2. Abstract

    PD-1 expression marks activated T cells susceptible to PD-1–mediated inhibition but not whether a PD-1–mediated signal is being delivered. Molecular predictors of response to PD-1 immune checkpoint blockade (ICB) are needed. We describe a monoclonal antibody (mAb) that detects PD-1 signaling through the detection of phosphorylation of the immunotyrosine switch motif (ITSM) in the intracellular tail of mouse and human PD-1 (phospho–PD-1). We showed PD-1+ tumor-infiltrating lymphocytes (TILs) in MC38 murine tumors had high phosphorylated PD-1, particularly in PD-1+TIM-3+ TILs. Upon PD-1 blockade, PD-1 phosphorylation was decreased in CD8+ TILs. Phospho–PD-1 increased in T cells from healthy human donors after PD-1 engagement and decreased in patients with Hodgkin lymphoma following ICB. These data demonstrate that phosphorylation of the ITSM motif of PD-1 marks dysfunctional T cells that may be rescued with PD-1 blockade. Detection of phospho–PD-1 in TILs is a potential biomarker for PD-1 immunotherapy responses.

     
    more » « less
  3. Abstract

    Metastatic castration-resistant prostate cancer is typically lethal, exhibiting intrinsic or acquired resistance to second-generation androgen-targeting therapies and minimal response to immune checkpoint inhibitors1. Cellular programs driving resistance in both cancer and immune cells remain poorly understood. We present single-cell transcriptomes from 14 patients with advanced prostate cancer, spanning all common metastatic sites. Irrespective of treatment exposure, adenocarcinoma cells pervasively coexpressed multiple androgen receptor isoforms, including truncated isoforms hypothesized to mediate resistance to androgen-targeting therapies2,3. Resistance to enzalutamide was associated with cancer cell–intrinsic epithelial–mesenchymal transition and transforming growth factor-β signaling. Small cell carcinoma cells exhibited divergent expression programs driven by transcriptional regulators promoting lineage plasticity and HOXB5, HOXB6 and NR1D2 (refs.4–6). Additionally, a subset of patients had high expression of dysfunction markers on cytotoxic CD8+T cells undergoing clonal expansion following enzalutamide treatment. Collectively, the transcriptional characterization of cancer and immune cells from human metastatic castration-resistant prostate cancer provides a basis for the development of therapeutic approaches complementing androgen signaling inhibition.

     
    more » « less
  4. NA (Ed.)
    Programmed death-ligand 1 (PD-L1) drives inhibition of antigen-specific T cell responses through engage- ment of its receptor programmed death-1 (PD-1) on activated T cells. Overexpression of these immune checkpoint proteins in the tumor microenvironment has motivated the design of targeted antibodies that disrupt this interaction. Despite clinical success of these antibodies, response rates remain low, necessi- tating novel approaches to enhance performance. Here, we report the development of antibody fusion pro- teins that block immune checkpoint pathways through a distinct mechanism targeting molecular trafficking. By engaging multiple receptor epitopes on PD-L1, our engineered multiparatopic antibodies induce rapid clustering, internalization, and degradation in an epitope- and topology-dependent manner. The comple- mentary mechanisms of ligand blockade and receptor downregulation led to more durable immune cell acti- vation and dramatically reduced PD-L1 availability in mouse tumors. Collectively, these multiparatopic anti- bodies offer mechanistic insight into immune checkpoint protein trafficking and how it may be manipulated to reprogram immune outcomes. 
    more » « less
  5. Abstract

    Individual MHC genotype constrains the mutational landscape during tumorigenesis. Immune checkpoint inhibition reactivates immunity against tumors that escaped immune surveillance in approximately 30% of cases. Recent studies demonstrated poorer response rates in female and younger patients. Although immune responses differ with sex and age, the role of MHC-based immune selection in this context is unknown. We find that tumors in younger and female individuals accumulate more poorly presented driver mutations than those in older and male patients, despite no differences in MHC genotype. Younger patients show the strongest effects of MHC-based driver mutation selection, with younger females showing compounded effects and nearly twice as much MHC-II based selection. This study presents evidence that strength of immune selection during tumor development varies with sex and age, and may influence the availability of mutant peptides capable of driving effective response to immune checkpoint inhibitor therapy.

     
    more » « less