skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Ionization induced plasma grating and its applications in strong-field ionization measurements
Award ID(s):
2003354
PAR ID:
10322296
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Plasma Physics and Controlled Fusion
Volume:
63
Issue:
9
ISSN:
0741-3335
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The definition of ambient ionization is updated from “no sample preparation” to sample preparation proximal and in real time with the ionization and analysis step. We differentiate between ambient ionization methods and the direct and hyphenated techniques. Ambient ionization has been reviewed many times and we summarise some of the approaches that reviews have taken to categorize the many ambient ionization methods. Due to the large number of permutations, frequent redundancy and complexity of the 80+ techniques developed so far, none of the review classifications is successful in classifying all the ambient ionization methods based on the chosen scheme. Likewise our classification based on major sample preparation method also fails at finding a good category for every method, but it does highlight the central role that real-time, proximal sample preparation plays in ambient analysis. 
    more » « less
  2. Thermal ionization is a critical process at temperatures T  > 10 3 K, particularly during star formation. An increase in ionization leads to a decrease in nonideal magnetohydrodynamics (MHD) resistivities, which has a significant impact on protoplanetary disks and protostar formation. We developed an extension of the fast computational ionization method presented in our recent paper to include thermal ionization. The model can be used to inexpensively calculate the density of ions and electrons and the electric charge of each size of grains for an arbitrary size distribution. This tool should be particularly useful for the self-consistent calculation of nonideal MHD resistivities in multidimensional simulations, especially of protostellar collapse and protoplanetary disks. 
    more » « less