skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical solution of large scale Hartree–Fock–Bogoliubov equations
The Hartree–Fock–Bogoliubov (HFB) theory is the starting point for treating superconducting systems. However, the computational cost for solving large scale HFB equations can be much larger than that of the Hartree–Fock equations, particularly when the Hamiltonian matrix is sparse, and the number of electrons N is relatively small compared to the matrix size N b . We first provide a concise and relatively self-contained review of the HFB theory for general finite sized quantum systems, with special focus on the treatment of spin symmetries from a linear algebra perspective. We then demonstrate that the pole expansion and selected inversion (PEXSI) method can be particularly well suited for solving large scale HFB equations. For a Hubbard-type Hamiltonian, the cost of PEXSI is at most 𝒪( N b 2 ) for both gapped and gapless systems, which can be significantly faster than the standard cubic scaling diagonalization methods. We show that PEXSI can solve a two-dimensional Hubbard-Hofstadter model with N b up to 2.88 × 10 6 , and the wall clock time is less than 100 s using 17 280 CPU cores. This enables the simulation of physical systems under experimentally realizable magnetic fields, which cannot be otherwise simulated with smaller systems.  more » « less
Award ID(s):
1652330
PAR ID:
10322303
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ESAIM: Mathematical Modelling and Numerical Analysis
Volume:
55
Issue:
3
ISSN:
0764-583X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Numerical difficulties associated with computing matrix elements of operators between Hartree–Fock–Bogoliubov (HFB) wavefunctions have plagued the development of HFB-based many-body theories for decades. The problem arises from divisions by zero in the standard formulation of the nonorthogonal Wick’s theorem in the limit of vanishing HFB overlap. In this Communication, we present a robust formulation of Wick’s theorem that stays well-behaved regardless of whether the HFB states are orthogonal or not. This new formulation ensures cancellation between the zeros of the overlap and the poles of the Pfaffian, which appears naturally in fermionic systems. Our formula explicitly eliminates self-interaction, which otherwise causes additional numerical challenges. A computationally efficient version of our formalism enables robust symmetry-projected HFB calculations with the same computational cost as mean-field theories. Moreover, we avoid potentially diverging normalization factors by introducing a robust normalization procedure. The resulting formalism treats even and odd number of particles on equal footing and reduces to Hartree–Fock as a natural limit. As proof of concept, we present a numerically stable and accurate solution to a Jordan–Wigner-transformed Hamiltonian, whose singularities motivated the present work. Our robust formulation of Wick’s theorem is a most promising development for methods using quasiparticle vacuum states. 
    more » « less
  2. Abstract We introduce the map of dynamics of quantum Bose gases into dynamics of quasifree states, which we call the “nonlinear quasifree approximation”. We use this map to derive the time-dependent Hartree–Fock–Bogoliubov (HFB) equations describing the dynamics of quantum fluctuations around a Bose–Einstein condensate. We prove global well-posedness of the HFB equations for pair potentials satisfying suitable regularity conditions, and we establish important conservation laws. We show that the space of solutions of the HFB equations has a symplectic structure reminiscent of a Hamiltonian system. This is then used to relate the HFB equations to the HFB eigenvalue equations discussed in the physics literature. We also construct Gibbs equilibrium states at positive temperature associated with the HFB equations, and we establish criteria for the appearance of Bose–Einstein condensation. 
    more » « less
  3. We present a graph-theory-based reformulation of all ONIOM-based molecular fragmentation methods. We discuss applications to (a) accurate post-Hartree–Fock AIMD that can be conducted at DFT cost for medium-sized systems, (b) hybrid DFT condensed-phase studies at the cost of pure density functionals, (c) reduced cost on-the-fly large basis gas-phase AIMD and condensed-phase studies, (d) post-Hartree–Fock-level potential surfaces at DFT cost to obtain quantum nuclear effects, and (e) novel transfer machine learning protocols derived from these measures. Additionally, in previous work, the unifying strategy discussed here has been used to construct new quantum computing algorithms. Thus, we conclude that this reformulation is robust and accurate. 
    more » « less
  4. We introduce nested gausslet bases, an improvement on previous gausslet bases that can treat systems containing atoms with much larger atomic numbers. We also introduce pure Gaussian distorted gausslet bases, which allow the Hamiltonian integrals to be performed analytically, as well as hybrid bases in which the gausslets are combined with standard Gaussian-type bases. All these bases feature the diagonal approximation for the electron–electron interactions so that the Hamiltonian is completely defined by two Nb × Nb matrices, where Nb ≈ 104 is small enough to permit fast calculations at the Hartree–Fock level. In constructing these bases, we have gained new mathematical insight into the construction of one-dimensional diagonal bases. In particular, we have proved an important theorem relating four key basis set properties: completeness, orthogonality, zero-moment conditions, and diagonalization of the coordinate operator matrix. We test our basis sets on small systems with a focus on high accuracy, obtaining, for example, an accuracy of 2 × 10−5 Ha for the total Hartree–Fock energy of the neon atom in the complete basis set limit. 
    more » « less
  5. Large language models (LLMs) have demonstrated abilities to perform complex tasks in multiple domains, including mathematical and scientific reasoning. We demonstrate that with carefully designed prompts, LLMs can accurately carry out key calculations in research papers in theoretical physics. We focus on a broadly-used approximation method in quantum physics: the Hartree-Fock method, requiring an analytic multi-step calculation deriving approximate Hamiltonian and corresponding self-consistency equations. To carry out the calculations using LLMs, we design multi-step prompt templates that break down the analytic calculation into standardized steps with placeholders for problem-specific information. We evaluate GPT-4’s performance in executing the calculation for 15 papers from the past decade, demonstrating that, with the correction of intermediate steps, it can correctly derive the final Hartree-Fock Hamiltonian in 13 cases. Aggregating across all research papers, we find an average score of 87.5 (out of 100) on the execution of individual calculation steps. We further use LLMs to mitigate the two primary bottlenecks in this evaluation process: (i) extracting information from papers to fill in templates and (ii) automatic scoring of the calculation steps, demonstrating good results in both cases. 
    more » « less