Abstract 2D black phosphorene (BP) carries a stellar set of physical properties such as conveniently tunable bandgap and extremely high ambipolar carrier mobility for optoelectronic devices. Herein, the judicious design and positioning of BP with tailored thickness as dual‐functional nanomaterials to concurrently enhance carrier extraction at both electron transport layer/perovskite and perovskite/hole transport layer interfaces for high‐efficiency and stable perovskite solar cells is reported. The synergy of favorable band energy alignment and concerted cascade interfacial carrier extraction, rendered by concurrent positioning of BP, delivered a progressively enhanced power conversion efficiency of 19.83% from 16.95% (BP‐free). Investigation into interfacial engineering further reveals enhanced light absorption and reduced trap density for improved photovoltaic performance with BP incorporation. This work demonstrates the appealing characteristic of rational implementation of BP as dual‐functional transport material for a diversity of optoelectronic devices, including photodetectors, sensors, light‐emitting diodes, etc.
more »
« less
A multifunctional 2D black phosphorene-based platform for improved photovoltaics
As one of the latest additions to the 2D nanomaterials family, black phosphorene (BP, monolayer or few-layer black phosphorus) has gained much attention in various forms of solar cells. This is due largely to its intriguing semiconducting properties such as tunable direct bandgap (from 0.3 eV in the bulk to 2.0 eV in the monolayer), extremely high ambipolar carrier mobility, broad visible to infrared light absorption, etc. These appealing optoelectronic attributes make BP a multifunctional nanomaterial for use in solar cells via tailoring carrier dynamics, band energy alignment, and light harvesting, thereby promoting the rapid development of third-generation solar cells. Notably, in sharp contrast to the copious work on revealing the fundamental properties of BP, investigation into the utility of BP is comparatively less, particularly in the area of photovoltaics. Herein, we first identify and summarize an array of unique characteristics of BP that underpin its application in photovoltaics, aiming at providing inspiration to develop new designs and device architectures of photovoltaics. Subsequently, state-of-the-art synthetic routes ( i.e. , top-down and bottom-up) to scalable BP production that facilitates its applications in optoelectronic materials and devices are outlined. Afterward, recent advances in a diverse set of BP-incorporated solar cells, where BP may impart electron and/or hole extraction and transport, function as a light absorber, provide dielectric screening for enhancing exciton dissociation, and modify the morphology of photoabsorbers, are discussed, including organic solar cells, dye-sensitized solar cells, heterojunction solar cells and perovskite solar cells. Finally, the challenges and opportunities in this rapidly evolving field are presented.
more »
« less
- PAR ID:
- 10322310
- Date Published:
- Journal Name:
- Chemical Society Reviews
- Volume:
- 50
- Issue:
- 23
- ISSN:
- 0306-0012
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Perovskites have been firmly established as one of the most promising materials for third-generation solar cells. There remain several great and lingering challenges to be addressed regarding device efficiency and stability. The photovoltaic efficiency of perovskite solar cells (PSCs) depends drastically on the charge-carrier dynamics. This complex process includes charge-carrier generation, extraction, transport and collection, each of which needs to be modulated in a favorable manner to achieve high performance. Two-dimensional materials (TDMs) including graphene and its derivatives, transition metal dichalcogenides ( e.g. , MoS 2 , WS 2 ), black phosphorus (BP), metal nanosheets and two-dimensional (2D) perovskite active layers have attracted much attention for application in perovskite solar cells due to their high carrier mobility and tunable work function properties which greatly impact the charge carrier dynamics of PSCs. To date, significant advances have been achieved in the field of TDM-based PSCs. In this review, the recent progress in the development and application of TDMs ( i.e. , graphene, graphdiyne, transition metal dichalcogenides, BP, and others) as electrodes, hole transporting layers, electron transporting layers and buffer layers in PSCs is detailed. 2D perovskites as active absorber materials in PSCs are also summarized. The effect of TDMs and 2D perovskites on the charge carrier dynamics of PSCs is discussed to provide a comprehensive understanding of their optoelectronic processes. The challenges facing the PSC devices are emphasized with corresponding solutions to these problems provided with the overall goal of improving the efficiency and stability of photovoltaic devices.more » « less
-
Low‐Temperature Synthesis of Stable CaZn 2 P 2 Zintl Phosphide Thin Films as Candidate Top AbsorbersAbstract The development of tandem photovoltaics and photoelectrochemical solar cells requires new absorber materials with bandgaps in the range of ≈1.5–2.3 eV, for use in the top cell paired with a narrower‐gap bottom cell. An outstanding challenge is finding materials with suitable optoelectronic and defect properties, good operational stability, and synthesis conditions that preserve underlying device layers. This study demonstrates the Zintl phosphide compound CaZn2P2as a compelling candidate semiconductor for these applications. Phase‐pure, ≈500 nm‐thick CaZn2P2thin films are prepared using a scalable reactive sputter deposition process at growth temperatures as low as 100 °C, which is desirable for device integration. Ultraviolet‐visible spectroscopy shows that CaZn2P2films exhibit an optical absorptivity of ≈104 cm−1at ≈1.95 eV direct bandgap. Room‐temperature photoluminescence (PL) measurements show near‐band‐edge optical emission, and time‐resolved microwave conductivity (TRMC) measurements indicate a photoexcited carrier lifetime of ≈30 ns. CaZn2P2is highly stable in both ambient conditions and moisture, as evidenced by PL and TRMC measurements. Experimental data are supported by first‐principles calculations, which indicate the absence of low‐formation‐energy, deep intrinsic defects. Overall, this study shall motivate future work integrating this potential top cell absorber material into tandem solar cells.more » « less
-
The piezo-phototronic effect (a coupling effect of piezoelectric, photoexcitation and semiconducting properties, coined in 2010) has been demonstrated to be an ingenious and robust strategy to manipulate optoelectronic processes by tuning the energy band structure and photoinduced carrier behavior. The piezo-phototronic effect exhibits great potential in improving the quantum yield efficiencies of optoelectronic materials and devices and thus could help increase the energy conversion efficiency, thus alleviating the energy shortage crisis. In this review, the fundamental principles and challenges of representative optoelectronic materials and devices are presented, including photocatalysts (converting solar energy into chemical energy), solar cells (generating electricity directly under light illumination), photodetectors (converting light into electrical signals) and light-emitting diodes (LEDs, converting electric current into emitted light signals). Importantly, the mechanisms of how the piezo-phototronic effect controls the optoelectronic processes and the recent progress and applications in the above-mentioned materials and devices are highlighted and summarized. Only photocatalysts, solar cells, photodetectors, and LEDs that display piezo-phototronic behavior are reviewed. Material and structural design, property characterization, theoretical simulation calculations, and mechanism analysis are then examined as strategies to further enhance the quantum yield efficiency of optoelectronic devices via the piezo-phototronic effect. This comprehensive overview will guide future fundamental and applied studies that capitalize on the piezo-phototronic effect for energy conversion and storage.more » « less
-
Abstract Germanium sulfide (GeS) is a 2D semiconductor with potential for high-speed optoelectronics and photovoltaics due to its near-infrared band gap and high mobility of optically excited charge carriers. Here, we use time-resolved THz spectroscopy to investigate the differences in ultrafast carrier dynamics in GeS following near-band gap photoexcitation (1.55 eV), which penetrates deep into the multilayer GeS, and excitation with above-band gap photon energy (3.1 eV), which is absorbed within a sub-20 nm surface layer. We find that the photoexcited carriers in the bulk have significantly longer lifetimes and higher mobility, as they are less impacted by trap states that affect carrier behavior in the surface layer. These insights are important for designing GeS-based photodetectors, solar energy conversion devices, and sensors that leverage the sensitivity of surface-layer photoexcited carriers to trap states.more » « less
An official website of the United States government

