Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 25, 2023
-
As one of the latest additions to the 2D nanomaterials family, black phosphorene (BP, monolayer or few-layer black phosphorus) has gained much attention in various forms of solar cells. This is due largely to its intriguing semiconducting properties such as tunable direct bandgap (from 0.3 eV in the bulk to 2.0 eV in the monolayer), extremely high ambipolar carrier mobility, broad visible to infrared light absorption, etc. These appealing optoelectronic attributes make BP a multifunctional nanomaterial for use in solar cells via tailoring carrier dynamics, band energy alignment, and light harvesting, thereby promoting the rapid development of third-generation solar cells. Notably, in sharp contrast to the copious work on revealing the fundamental properties of BP, investigation into the utility of BP is comparatively less, particularly in the area of photovoltaics. Herein, we first identify and summarize an array of unique characteristics of BP that underpin its application in photovoltaics, aiming at providing inspiration to develop new designs and device architectures of photovoltaics. Subsequently, state-of-the-art synthetic routes ( i.e. , top-down and bottom-up) to scalable BP production that facilitates its applications in optoelectronic materials and devices are outlined. Afterward, recent advances in a diverse set of BP-incorporated solar cells, where BPmore »
-
Amorphous inorganic semiconductors have attracted growing interest due to their unique electrical and optical properties that arise from their intrinsic disordered structure and thermodynamic metastability. Recently, amorphous inorganic semiconductors have been applied in a variety of new technologies, including solar cells, photoelectrocatalysis, and photocatalysis. It has been reported that amorphous phases can improve both efficiency and stability in these applications. While these phenomena are well established, their mechanisms have long remained unclear. This review first introduces the general background of amorphous inorganic semiconductor properties and synthesis. Then, the recent successes and current challenges of amorphous inorganic semiconductor-based materials for applications in solar cells, photoelectrocatalysis, and photocatalysis are addressed. In particular, we discuss the mechanisms behind the remarkable performances of amorphous inorganic semiconductors in these fields. Finally, we provide insightful perspectives into further developments for applications of amorphous inorganic semiconductors.