skip to main content


Title: Assessing transport and retention of nitrate and other materials through the riparian zone and stream channel with simulated precipitation
Abstract

Riparian zones, the interfaces between land and stream, perform vital ecosystem functions including transformation and retention of nutrients and sediment moving across the landscape. Although many studies assess transport through and transformation of materials in riparian zones, less is known about the direct influence of precipitation falling on these zones on material retention and transport. Additionally, few experiments can compare riparian retention to stream‐channel retention.

We present a novel experimental approach to assess retention of nitrate entering as precipitation in riparian zones and compare riparian retention and movement of nitrate, other ions, sediments to and within the adjacent stream channel. We simulated an intense precipitation event with15N‐labelled nitrate as a bioactive solute and bromide as an inert tracer. This method extends tracer release approaches applied to streams worldwide and links it to processes at the aquatic/ terrestrial interface. It further allows determination of movement of materials into streams from bankside precipitation.

The riparian zone removed or retained a greater proportion of nitrate than the stream relative to bromide; over half the added bromide reached the stream through a few metres of riparian zone, compared to only 0.2% of the added nitrate. Of the 0.2% that reached the stream, 30% of that nitrate was removed or retained by instream processes after travelling 60 downstream. Roughly 10% of the total15N addition ended up sequestered in the above‐ground portions of the riparian grasses by the end of the growing season, and very little of it was recovered from the soil. We saw little evidence of bulk transport of other ions or sediment from this riparian soil to the stream.

Our data are consistent with the concept of high nitrate retention in vegetated riparian zones, even for nitrate falling directly upon them in the form of atmospheric deposition in precipitation.

 
more » « less
Award ID(s):
1656006 2025849
NSF-PAR ID:
10447007
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Methods in Ecology and Evolution
Volume:
13
Issue:
3
ISSN:
2041-210X
Page Range / eLocation ID:
p. 757-766
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Stream restoration is a popular approach for managing nitrogen (N) in degraded, flashy urban streams. Here, we investigated the long-term effects of stream restoration involving floodplain reconnection on riparian and in-stream N transport and transformation in an urban stream in the Chesapeake Bay watershed. We examined relationships between hydrology, chemistry, and biology using a Before/After-Control/Impact (BACI) study design to determine how hydrologic flashiness, nitrate (NO3) concentrations (mg/L), and N flux, both NO3and total N (kg/yr), changed after the restoration and floodplain hydrologic reconnection to its stream channel. We examined two independent surface water and groundwater data sets (EPA and USGS) collected from 2002–2012 at our study sites in the Minebank Run watershed. Restoration was completed during 2004 and 2005. Afterward, the monthly hydrologic flashiness index, based on mean monthly discharge, decreased over time from 2002 and 2008. However, from 2008–2012 hydrologic flashiness returned to pre-restoration levels. Based on the EPA data set, NO3concentration in groundwater and surface water was significantly less after restoration while the control site showed no change. DOC and NO3were negatively related before and after restoration suggesting C limitation of N transformations. Long-term trends in surface water NO3concentrations based on USGS surface water data showed downward trends after restoration at both the restored and control sites, whereas specific conductance showed no trend. Comparisons of NO3concentrations with Clconcentrations and specific conductance in both ground and surface waters suggested that NO3reduction after restoration was not due to dilution or load reductions from the watershed. Modeled NO3flux decreased post restoration over time but the rate of decrease was reduced likely due to failure of restoration features that facilitated N transformations. Groundwater NO3concentrations varied among stream features suggesting that some engineered features may be functionally better at creating optimal conditions for N retention. However, some engineered features eroded and failed post restoration thereby reducing efficacy of the stream restoration to reduce flashiness and NO3flux. N management via stream restoration will be most effective where flashiness can be reduced and DOC made available for denitrifiers. Stream restoration may be an important component of holistic watershed management including stormwater management and nutrient source control if stream restoration and floodplain reconnection can be done in a manner to resist the erosive effects of large storm events that can degrade streams to pre-restoration conditions. Long-term evolution of water quality functions in response to degradation of restored stream channels and floodplains from urban stressors and storms over time warrants further study, however.

     
    more » « less
  2. Abstract

    Riparian zones and the streams they border provide vital habitat for organisms, water quality protection, and other important ecosystem services. These areas are under pressure from local (land use/land cover change) to global (climate change) processes. Woody vegetation is expanding in grassland riparian zones worldwide. Here we report on a decade‐long watershed‐scale mechanical removal of woody riparian vegetation along 4.5 km of stream channel in a before–after control impact experiment. Prior to this removal, woody plants had expanded into grassy riparian areas, associated with a decline in streamflow, loss of grassy plant species, and other ecosystem‐scale impacts. We confirmed some expected responses, including rapid increases in stream nutrients and sediments, disappearance of stream mosses, and decreased organic inputs to streams via riparian leaves. We were surprised that nutrient and sediment increases were transient for 3 years, that there was no recovery of stream discharge, and that areas with woody removal did not shift back to a grassland state, even when reseeded with grassland species. Rapid expansion of shrubs (Cornus drummondii,Prunus americana) in the areas where trees were removed allowed woody vegetation to remain dominant despite repeating the cutting every 2 years. Our results suggest woody expansion can fundamentally alter terrestrial and aquatic habitat connections in grasslands, resulting in inexorable movement toward a new ecosystem state. Human pressures, such as climate change, atmospheric CO2increases, and elevated atmospheric nitrogen deposition, could continue to push the ecosystem along a trajectory that is difficult to change. Our results suggest that predicting relationships between riparian zones and the streams they border could be difficult in the face of global change in all biomes, even in well‐studied sites.

     
    more » « less
  3. Abstract

    Microbial processing of reactive nitrogen in stream sediments and connected aquifers can remove and transform nitrogen prior to its discharge into coastal waters, decreasing the likelihood of harmful algal blooms and low oxygen levels in estuaries. Canonical wisdom points to the decreased capacity of rivers to retain nitrogen as they flow toward the coast. However, how tidal freshwater zones, which often extend hundreds of kilometers inland, process and remove nitrogen remains unknown. Using geochemical measurements and numerical models, we show that tidal pumping results in the rapid cycling of nitrogen within distinct zones throughout the riparian aquifer. Near the fluctuating water table nitrification dominates, with high nitrate concentrations (>10 mg N/L) and consistent isotopic composition. Beneath this zone, isotopes reveal that nitrate is both denitrified and added over the tidal cycle, maintaining nitrate concentrations >3–4 mg N/L. In most of the riparian aquifer and streambed, nitrate concentrations are <0.5 mg N/L, suggesting denitrification dominates. Model results reveal that oxygen delivery to groundwater from the overlying unsaturated soil fuels mineralization and nitrification, with subsequent denitrification in low‐oxygen, high organic matter regions. Depending on flow paths, tidal freshwater zones could be sources of nitrate in regions with permeable sediment and low organic matter content.

     
    more » « less
  4. Abstract

    Urbanization increases stormwater runoff into streams, resulting in channel erosion, and increases in sediment and nutrient delivery to receiving water bodies. Stream restoration is widely used as a Best Management Practice to stabilize banks and reduce sediment and nutrient loads. While most instream nutrient retention measurements are often limited to low flow conditions, most of the nutrient load is mobilized at high stream flows in urban settings. We, therefore, use a process‐based stream ecosystem model in conjunction with measurements at low flows and focus on estimation of stream nitrogen retention over the full streamflow distribution. The model provides a theoretical framework to evaluate the geomorphic, hydrologic, and ecological factors that are manipulated by stream restoration, and drive nitrogen retention. We set a model for a pool‐riffle sequence restored stream (190 m) in Baltimore County, Maryland and calibrated the model to thein situmeasured primary production (Nash–Sutcliffe model efficiency coefficient [NSE] NSE = 0.89), respiration (NSE = 0.74), and nitrate uptake lengths (R2 = 0.88). At the daily scale, simulations showed low nitrogen retention during high flows due to high transport rates, mobilization of stored hyporheic nitrogen, and scouring of periphyton biomass. This result underscores the need to reduce contributing watershed runoff flashiness to promote aquatic nutrient cycling and retention. At monthly and yearly time scale, model predicted a higher percent reduction in summer than in winter and estimated 5.7%–9.5% of annual nitrate reductions. While the model was tested in a pool‐riffle sequence restoration design, the approach can be adapted to evaluate a range of channel restoration design characteristics, and the effects of upland watershed restoration to mitigate stormwater loading through both restored and unrestored streams.

     
    more » « less
  5. Abstract

    Species interactions may couple the resource dynamics of different primary producers and may enhance productivity by reducing loss from the system. In low‐resource systems, this biotic control may be especially important for maintaining productivity. In drylands, the activities of vascular plants and biological soil crusts can be decoupled in space because biocrusts grow on the soil surface but plant roots are underground, and decoupled in time due to biocrusts activating with smaller precipitation events than plants. Soil fungi are hypothesized to functionally couple the plants and biocrusts by transporting nutrients. We studied whether disrupting fungi between biocrusts and plants reduces nitrogen transfer and retention and decreases primary production as predicted by the fungal loop hypothesis. Additionally, we compared varying precipitation regimes that can drive different timing and depth of biological activities.

    We used field mesocosms in which the potential for fungal connections between biocrusts and roots remained intact or were impeded by mesh. We imposed a precipitation regime of small, frequent or large, infrequent rain events. We used15N to track fungal‐mediated nitrogen (N) transfer. We quantified microbial carbon use efficiency and plant and biocrust production and N content.

    Fungal connections with biocrusts benefitted plant biomass and nutrient retention under favourable (large, infrequent) precipitation regimes but not under stressful (small, frequent) regimes, demonstrating context dependency in the fungal loop. Translocation of a15N tracer from biocrusts to roots was marginally lower when fungal connections were impeded than intact. Under large, infrequent rains, when fungal connections were intact, the C:N of leaves converged towards the C:N of biocrusts, suggesting higher N retention in the plant, and plant above‐ground biomass was greater relative to the fungal connections‐impeded treatment. Carbon use efficiency in both biocrust and rooting zone soil was less C‐limited when connections were intact than impeded, again only in the large, infrequent precipitation regime.

    Synthesis. Although we did not find evidence of a reciprocal transfer of C and N between plants and biocrusts, plant production was benefited by fungal connections with biocrusts under favourable conditions.

     
    more » « less