Abstract To understand phenotypic variations and key factors which affect disease susceptibility of complex traits, it is important to decipher cell‐type tissue compositions. To study cellular compositions of bulk tissue samples, one can evaluate cellular abundances and cell‐type‐specific gene expression patterns from the tissue transcriptome profiles. We develop both fixed and mixed models to reconstruct cellular expression fractions for bulk‐profiled samples by using reference single‐cell (sc) RNA‐sequencing (RNA‐seq) reference data. In benchmark evaluations of estimating cellular expression fractions, the mixed‐effect models provide similar results as an elegant machine learning algorithm named cell‐type identification by estimating relative subsets of RNA transcripts (CIBERSORTx), which is a well‐known and reliable procedure to reconstruct cell‐type abundances and cell‐type‐specific gene expression profiles. In real data analysis, the mixed‐effect models outperform or perform similarly as CIBERSORTx. The mixed models perform better than the fixed models in both benchmark evaluations and data analysis. In simulation studies, we show that if the heterogeneity exists in scRNA‐seq data, it is better to use mixed models with heterogeneous mean and variance–covariance. As a byproduct, the mixed models provide fractions of covariance between subject‐specific gene expression and cell types to measure their correlations. The proposed mixed models provide a complementary tool to dissect bulk tissues using scRNA‐seq data.
more »
« less
Systematic evaluation of transcriptomics-based deconvolution methods and references using thousands of clinical samples
Abstract Estimating cell type composition of blood and tissue samples is a biological challenge relevant in both laboratory studies and clinical care. In recent years, a number of computational tools have been developed to estimate cell type abundance using gene expression data. Although these tools use a variety of approaches, they all leverage expression profiles from purified cell types to evaluate the cell type composition within samples. In this study, we compare 12 cell type quantification tools and evaluate their performance while using each of 10 separate reference profiles. Specifically, we have run each tool on over 4000 samples with known cell type proportions, spanning both immune and stromal cell types. A total of 12 of these represent in vitro synthetic mixtures and 300 represent in silico synthetic mixtures prepared using single-cell data. A final 3728 clinical samples have been collected from the Framingham cohort, for which cell populations have been quantified using electrical impedance cell counting. When tools are applied to the Framingham dataset, the tool Estimating the Proportions of Immune and Cancer cells (EPIC) produces the highest correlation, whereas Gene Expression Deconvolution Interactive Tool (GEDIT) produces the lowest error. The best tool for other datasets is varied, but CIBERSORT and GEDIT most consistently produce accurate results. We find that optimal reference depends on the tool used, and report suggested references to be used with each tool. Most tools return results within minutes, but on large datasets runtimes for CIBERSORT can exceed hours or even days. We conclude that deconvolution methods are capable of returning high-quality results, but that proper reference selection is critical.
more »
« less
- Award ID(s):
- 2041984
- PAR ID:
- 10322364
- Date Published:
- Journal Name:
- Briefings in Bioinformatics
- Volume:
- 22
- Issue:
- 6
- ISSN:
- 1467-5463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present Bisque, a tool for estimating cell type proportions in bulk expression. Bisque implements a regression-based approach that utilizes single-cell RNA-seq (scRNA-seq) or single-nucleus RNA-seq (snRNA-seq) data to generate a reference expression profile and learn gene-specific bulk expression transformations to robustly decompose RNA-seq data. These transformations significantly improve decomposition performance compared to existing methods when there is significant technical variation in the generation of the reference profile and observed bulk expression. Importantly, compared to existing methods, our approach is extremely efficient, making it suitable for the analysis of large genomic datasets that are becoming ubiquitous. When applied to subcutaneous adipose and dorsolateral prefrontal cortex expression datasets with both bulk RNA-seq and snRNA-seq data, Bisque replicates previously reported associations between cell type proportions and measured phenotypes across abundant and rare cell types. We further propose an additional mode of operation that merely requires a set of known marker genes.more » « less
-
Abstract BackgroundComputational cell type deconvolution enables the estimation of cell type abundance from bulk tissues and is important for understanding tissue microenviroment, especially in tumor tissues. With rapid development of deconvolution methods, many benchmarking studies have been published aiming for a comprehensive evaluation for these methods. Benchmarking studies rely on cell-type resolved single-cell RNA-seq data to create simulated pseudobulk datasets by adding individual cells-types in controlled proportions. ResultsIn our work, we show that the standard application of this approach, which uses randomly selected single cells, regardless of the intrinsic difference between them, generates synthetic bulk expression values that lack appropriate biological variance. We demonstrate why and how the current bulk simulation pipeline with random cells is unrealistic and propose a heterogeneous simulation strategy as a solution. The heterogeneously simulated bulk samples match up with the variance observed in real bulk datasets and therefore provide concrete benefits for benchmarking in several ways. We demonstrate that conceptual classes of deconvolution methods differ dramatically in their robustness to heterogeneity with reference-free methods performing particularly poorly. For regression-based methods, the heterogeneous simulation provides an explicit framework to disentangle the contributions of reference construction and regression methods to performance. Finally, we perform an extensive benchmark of diverse methods across eight different datasets and find BayesPrism and a hybrid MuSiC/CIBERSORTx approach to be the top performers. ConclusionsOur heterogeneous bulk simulation method and the entire benchmarking framework is implemented in a user friendly packagehttps://github.com/humengying0907/deconvBenchmarkingandhttps://doi.org/10.5281/zenodo.8206516, enabling further developments in deconvolution methods.more » « less
-
Abstract BackgroundCrohn’s disease is a lifelong disease characterized by chronic inflammation of the gastrointestinal tract. Defining the cellular and transcriptional composition of the mucosa at different stages of disease progression is needed for personalized therapy in Crohn’s. MethodsIleal biopsies were obtained from (1) control subjects (n = 6), (2) treatment-naïve patients (n = 7), and (3) established (n = 14) Crohn’s patients along with remission (n = 3) and refractory (n = 11) treatment groups. The biopsies processed using 10x Genomics single cell 5' yielded 139 906 cells. Gene expression count matrices of all samples were analyzed by reciprocal principal component integration, followed by clustering analysis. Manual annotations of the clusters were performed using canonical gene markers. Cell type proportions, differential expression analysis, and gene ontology enrichment were carried out for each cell type. ResultsWe identified 3 cellular compartments with 9 epithelial, 1 stromal, and 5 immune cell subtypes. We observed differences in the cellular composition between control, treatment-naïve, and established groups, with the significant changes in the epithelial subtypes of the treatment-naïve patients, including microfold, tuft, goblet, enterocyte,s and BEST4+ cells. Surprisingly, fewer changes in the composition of the immune compartment were observed; however, gene expression in the epithelial and immune compartment was different between Crohn’s phenotypes, indicating changes in cellular activity. ConclusionsOur study identified cellular and transcriptional signatures associated with treatment-naïve Crohn’s disease that collectively point to dysfunction of the intestinal barrier with an increase in inflammatory cellular activity. Our analysis also highlights the heterogeneity among patients within the same disease phenotype, shining a new light on personalized treatment responses and strategies.more » « less
-
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent responsible for coronavirus disease 2019 (COVID-19), has affected the lives of billions and killed millions of infected people. This virus has been demonstrated to have different outcomes among individuals, with some of them presenting a mild infection, while others present severe symptoms or even death. The identification of the molecular states related to the severity of a COVID-19 infection has become of the utmost importance to understanding the differences in critical immune response. In this study, we computationally processed a set of publicly available single-cell RNA-Seq (scRNA-Seq) data of 12 Bronchoalveolar Lavage Fluid (BALF) samples diagnosed as having a mild, severe, or no infection, and generated a high-quality dataset that consists of 63,734 cells, each with 23,916 genes. We extended the cell-type and sub-type composition identification and our analysis showed significant differences in cell-type composition in mild and severe groups compared to the normal. Importantly, inflammatory responses were dramatically elevated in the severe group, which was evidenced by the significant increase in macrophages, from 10.56% in the normal group to 20.97% in the mild group and 34.15% in the severe group. As an indicator of immune defense, populations of T cells accounted for 24.76% in the mild group and decreased to 7.35% in the severe group. To verify these findings, we developed several artificial neural networks (ANNs) and graph convolutional neural network (GCNN) models. We showed that the GCNN models reach a prediction accuracy of the infection of 91.16% using data from subtypes of macrophages. Overall, our study indicates significant differences in the gene expression profiles of inflammatory response and immune cells of severely infected patients.more » « less
An official website of the United States government

