skip to main content


Title: Phoretic mite infestations associated with Rhynchophorus palmarum (Coleoptera: Curculionidae) in southern California
The South American palm weevil, Rhynchophorus palmarum (Coleoptera: Curculionidae), established in San Diego County, California, USA sometime around 2014. Attached to the motile adults of this destructive palm pest, we identified three species of uropodine mites (Parasitiformes: Uropodina), Centrouropoda n. sp., Dinychus n. sp. and Fuscuropoda marginata. Two of these species, Centrouropoda n. sp. and Dinychus n. sp. are recorded for the first time in the USA and were likely introduced by R. palmarum. Several species of mites, primarily of Uropodina, have previously been recorded as phoretic on Rhynchophorus spp. In this study, we examined 3,035 adult R. palmarum trapped over a 2.5-year period, July 2016 to December 2018, and documented the presence of and species composition of phoretic mites and their relationship with weevil morphometrics (i.e., pronotum length and width). The presence and species composition of mites on weevil body parts changed over the survey period. No mites were found under weevil elytra in 2016 and mite prevalence under elytra increased over 2017–2018 due to an increased abundance of Centrouropoda n. sp per individual beetle. Mite occurrence levels were significantly correlated with reduced pronotum widths of male weevils only. The significance of this finding on male weevil fitness is unknown. Potential implications of phoretic mites on aspects of the invasion biology of R. palmarum are discussed.  more » « less
Award ID(s):
2017439
NSF-PAR ID:
10322388
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Systematic and Applied Acarology
ISSN:
1362-1971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Allen Moore, University of (Ed.)
    Abstract

    Parasitism is nearly ubiquitous in animals and is frequently associated with fitness costs in host organisms, including reduced growth, foraging, and reproduction. In many species, males tend to be more heavily parasitized than females and thus may bear greater costs of parasitism.Sceloporus undulatusis a female‐larger, sexually size dimorphic lizard species that is heavily parasitized by chigger mites (Eutrombicula alfreddugesi). In particular, the intensity of mite parasitism is higher in male than in female juveniles during the period of time when sex differences in growth rate lead to the development of sexual size dimorphism (SSD). Sex‐biased differences in fitness costs of parasitism have been documented in other species. We investigated whether there are growth costs of mite ectoparasitism, at a time coinciding with sex differences in growth rate and the onset of SSD. If there are sex‐biased growth costs of parasitism, then this could suggest a contribution to the development of SSD inS. undulatus. We measured growth and mite loads in two cohorts of unmanipulated, field‐active yearlings by conducting descriptive mark‐recapture studies during the activity seasons of 2016 and 2019. Yearling males had consistently higher mid‐summer mite loads and consistently lower growth rates than females. However, we found that growth rate and body condition were independent of mite load in both sexes. Furthermore, growth ratesandmite loads were higher in 2019 than in 2016. Our findings suggest that juveniles ofS. undulatusare highly tolerant of chigger mites and that any costs imposed by mites may be at the expense of functions other than growth. We conclude that sex‐biased mite ectoparasitism does not contribute to sex differences in growth rate and, therefore, does not contribute to the development of SSD.

     
    more » « less
  2. Abstract Context

    Habitat fragmentation is a leading threat to biodiversity, yet the impacts of fragmentation on most taxa, let alone interactions among those taxa, remain largely unknown.

    Objectives

    We studied how three consequences of fragmentation—reduced patch connectivity, altered patch shape, and edge proximity—impact plant-dwelling mite communities and mite-plant-fungus interactions within a large-scale habitat fragmentation experiment.

    Methods

    We sampled mite communities from the leaves ofQuercus nigra(a plant species that has foliar domatia which harbor fungivorous and predacious mites) near and far from edge within fragments of varying edge-to-area ratio (shape) and connectivity via corridors. We also performed a mite-exclusion experiment across these fragmentation treatments to test the effects of mite presence and fungal hyphal abundance on leaf surfaces.

    Results

    Habitat edges influenced the abundance and richness of leaf-dwelling mites; plants closer to the edge had higher mite abundance and species richness. Likewise, hyphal counts were higher on leaves near patch edges. Despite both mite and fungal abundance being higher at patch edges, leaf hyphal counts were not impacted by mite abundance on those leaves. Neither patch shape nor connectivity influenced mite abundance, mite species richness, or the influence of mites on leaf surface fungal abundance.

    Conclusion

    Our results suggest that mites and foliar fungi may be independently affected by edge-structured environmental gradients, like temperature, rather than trophic effects. We demonstrate that large-scale habitat fragmentation and particularly edge effects can have impacts on multiple levels of microscopic communities, even in the absence of cascading trophic effects.

     
    more » « less
  3. Abstract

    Arthropods harbor a largely undocumented diversity of RNA viruses. Some arthropods, like mosquitoes, can transmit viruses to vertebrates but are themselves parasitized by other arthropod species, such as mites. Very little is known about the viruses of these ectoparasites and how they move through the host–parasite relationship. To address this, we determined the virome of both mosquitoes and the mites that feed on them. The mosquito Aedes communis is an abundant and widely distributed species in Sweden, in northern Europe. These dipterans are commonly parasitized by water mite larvae (Trombidiformes: Mideopsidae) that are hypothesized to impose negative selection pressures on the mosquito by reducing fitness. In turn, viruses are dual-host agents in the mosquito–mite interaction. We determined the RNA virus diversity of mite-free and mite-detached mosquitoes, as well as their parasitic mites, using meta-transcriptomic sequencing. Our results revealed an extensive RNA virus diversity in both mites and mosquitoes, including thirty-seven putative novel RNA viruses that cover a wide taxonomic range. Notably, a high proportion of viruses (20/37) were shared between mites and mosquitoes, while a limited number of viruses were present in a single host. Comparisons of virus composition and abundance suggest potential virus transfer between mosquitoes and mites during their symbiotic interaction. These findings shed light on virome diversity and ecology in the context of arthropod host–parasite–virus relationships.

     
    more » « less
  4. Water mites are aquatic arachnids that have been used in Europe and Central America as bioindicators of ecological health in various freshwater ecosystems (including bogs). Water mites can be found in high densities in the Laurentian Great Lakes and adjacent habitats. Although they are abundant, water mites are generally not used in the assessment of aquatic habitats in the Great Lakes and are usually assigned to the “other” category in macroinvertebrate assessments. This is despite evidence of their utility as aquatic bioindicators. In the present study we consider water mites as bioindicators of the environmental health of Point Rosa marsh, a threatened marsh found on the US side of transboundary Lake St. Clair. The abundance of water mites in Point Rosa Marsh increased from 2017 to 2019 as lake water levels increased. Although increasing water levels in Lake St. Clair can be considered a negative event due to loss of irreplaceable coastal habitat by erosion with potential economic impacts, this present study indicates that water mite populations in Point Rosa Marsh increased during the same period (2017 to 2019). As a result of our study we: update the biodiversity of water mites from Lake St. Clair with new records compared to the last report from the lake over 45 years ago, first report on water mite assemblages at Point Rosa marsh at the Lake St. Clair Metropark on Lake St. Clair and the first demonstration of water mites used as bioindicators in the habitats of the Laurentian Great Lakes. 
    more » « less
  5. The cicada fauna of Western Australia is briefly reviewed. Six genera and 14 species are recorded from the State for the first time bringing the total of known species and subspecies to 105 and a list of all 105 is provided. Among the taxa here recorded are five new genera and 13 new species belonging to the tribes Macrotristriini (Illyria viridis sp. n.), Pictilini (Chrysocicada trophis sp. n.), and Cicadettini (Calipsalta gen. n., Calipsalta brunnea sp. n., C. fumosa sp. n., C. viridans sp. n., Kalarko gen. n., Kalarko ferruginosus sp. n., Ewartia adusta sp. n., Parvopsalta gen. n., Parvopsalta victoriae sp. n., Pedana gen. n., Pedana hesperia sp. n., Pegapsaltria gen. n., Pegapsaltria lutea sp. n., Pyropsalta amnica sp. n., Py. patula sp. n., and Py. rhythmica sp. n). In addition, Erempsalta hermannsburgensis (Distant, 1907) is redescribed and its presence in Western Australia (and four other States) documented for the first time. Songs are analysed for all species except two species of Pyropsalta where recordings were unavailable. 
    more » « less