skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigations of Sizes and Dynamical Motions of Solar Photospheric Granules by a Novel Granular Segmenting Algorithm
Abstract Granules observed in the solar photosphere are believed to be convective and turbulent, but the physical picture of the granular dynamical process remains unclear. Here we performed an investigation of granular dynamical motions of full length scales based on data obtained by the 1 m New Vacuum Solar Telescope and the 1.6 m Goode Solar Telescope. We developed a new granule segmenting method, which can detect both small faint and large bright granules. A large number of granules were detected, and two critical sizes, 265 and 1420 km, were found to separate the granules into three length ranges. The granules with sizes above 1420 km follow Gaussian distribution, and demonstrate flat in flatness function, which shows that they are non-intermittent and thus are dominated by convective motions. Small granules with sizes between 265 and 1420 km are fitted by a combination of power-law function and Gauss function, and exhibit nonlinearity in flatness function, which reveals that they are in the mixing motions of convection and turbulence. Mini granules with sizes below 265 km follow the power-law distribution and demonstrate linearity in flatness function, indicating that they are intermittent and strongly turbulent. These results suggest that a cascade process occurs: large granules break down due to convective instability, which transports energy into small ones; then turbulence is induced and grows, which competes with convection and further causes the small granules to continuously split. Eventually, the motions in even smaller scales enter in a turbulence-dominated regime.  more » « less
Award ID(s):
1821294
PAR ID:
10322434
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
923
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Investigating the length scales of granules could help understand the dynamics of granules in the photosphere. In this work, we detected and identified granules in an active region near disk center observed at wavelength of TiO (7057 Å) by the 1.6 m Goode Solar Telescope (GST). By a detailed analysis of the size distribution and flatness of granules, we found a critical size that divides the granules in motions into two regimes: convection and turbulence. The length scales of granules with sizes larger than 600 km follow Gauss function and demonstrate “flat” in flatness, which reveal that these granules are dominated by convection. Those with sizes smaller than 600 km follow power-law function and behave power-law tendency in flatness, which indicate that the small granules are dominated by turbulence. Hence, for the granules in active regions, they are originally convective in large length scale, and directly become turbulent once their sizes turn to small, likely below the critical size of 600 km. Comparing with the granules in quiet regions, they evolve with the absence of the mixing motions of convection and turbulence. Such a difference is probably caused by the interaction between fluid motions and strong magnetic fields in active regions. The strong magnetic fields make high magnetic pressure which creates pressure walls and slows down the evolution of convective granules. Such walls cause convective granules extending to smaller sizes on one hand, and cause wide intergranular lanes on the other hand. The small granules isolated in such wide intergranular lanes are continually sheared, rotated by strong downflows in surroundings and hereby become turbulent. 
    more » « less
  2. Abstract We demonstrate that an extended eddy‐diffusivity mass‐flux (EDMF) scheme can be used as a unified parameterization of subgrid‐scale turbulence and convection across a range of dynamical regimes, from dry convective boundary layers, through shallow convection, to deep convection. Central to achieving this unified representation of subgrid‐scale motions are entrainment and detrainment closures. We model entrainment and detrainment rates as a combination of turbulent and dynamical processes. Turbulent entrainment/detrainment is represented as downgradient diffusion between plumes and their environment. Dynamical entrainment/detrainment is proportional to a ratio of a relative buoyancy of a plume and a vertical velocity scale, that is modulated by heuristic nondimensional functions which represent their relative magnitudes and the enhanced detrainment due to evaporation from clouds in drier environment. We first evaluate the closures offline against entrainment and detrainment rates diagnosed from large‐eddy simulations (LES) in which tracers are used to identify plumes, their turbulent environment, and mass and tracer exchanges between them. The LES are of canonical test cases of a dry convective boundary layer, shallow convection, and deep convection, thus spanning a broad range of regimes. We then compare the LES with the full EDMF scheme, including the new closures, in a single column model (SCM). The results show good agreement between the SCM and LES in quantities that are key for climate models, including thermodynamic profiles, cloud liquid water profiles, and profiles of higher moments of turbulent statistics. The SCM also captures well the diurnal cycle of convection and the onset of precipitation. 
    more » « less
  3. Abstract We use molecular line data from the Atacama Large Millimeter/submillimeter Array, Submillimeter Array, James Clerk Maxwell Telescope, and NANTEN2 to study the multiscale (∼15–0.005 pc) velocity statistics in the massive star formation region NGC 6334. We find that the nonthermal motions revealed by the velocity dispersion function (VDF) stay supersonic over scales of several orders of magnitude. The multiscale nonthermal motions revealed by different instruments do not follow the same continuous power law, which is because the massive star formation activities near central young stellar objects have increased the nonthermal motions in small-scale and high-density regions. The magnitudes of VDFs vary in different gas materials at the same scale, where the infrared dark clump N6334S in an early evolutionary stage shows a lower level of nonthermal motions than other more evolved clumps due to its more quiescent star formation activity. We find possible signs of small-scale-driven (e.g., by gravitational accretion or outflows) supersonic turbulence in clump N6334IV with a three-point VDF analysis. Our results clearly show that the scaling relation of velocity fields in NGC 6334 deviates from a continuous and universal turbulence cascade due to massive star formation activities. 
    more » « less
  4. Abstract Jupiter’s atmosphere is one of the most turbulent places in the solar system. Whereas observations of lightning and thunderstorms point to moist convection as a small-scale energy source for Jupiter’s large-scale vortices and zonal jets, this has never been demonstrated due to the coarse resolution of pre-Juno measurements. The Juno spacecraft discovered that Jovian high latitudes host a cluster of large cyclones with diameter of around 5,000 km, each associated with intermediate- (roughly between 500 and 1,600 km) and smaller-scale vortices and filaments of around 100 km. Here, we analyse infrared images from Juno with a high resolution of 10 km. We unveil a dynamical regime associated with a significant energy source of convective origin that peaks at 100 km scales and in which energy gets subsequently transferred upscale to the large circumpolar and polar cyclones. Although this energy route has never been observed on another planet, it is surprisingly consistent with idealized studies of rapidly rotating Rayleigh–Bénard convection, lending theoretical support to our analyses. This energy route is expected to enhance the heat transfer from Jupiter’s hot interior to its troposphere and may also be relevant to the Earth’s atmosphere, helping us better understand the dynamics of our own planet. 
    more » « less
  5. The competition between turbulent convection and global rotation in planetary and stellar interiors governs the transport of heat and tracers, as well as magnetic field generation. These objects operate in dynamical regimes ranging from weakly rotating convection to the “geostrophic turbulence” regime of rapidly rotating convection. However, the latter regime has remained elusive in the laboratory, despite a worldwide effort to design ever-taller rotating convection cells over the last decade. Building on a recent experimental approach where convection is driven radiatively, we report heat transport measurements in quantitative agreement with this scaling regime, the experimental scaling law being validated against direct numerical simulations (DNS) of the idealized setup. The scaling exponent from both experiments and DNS agrees well with the geostrophic turbulence prediction. The prefactor of the scaling law is greater than the one diagnosed in previous idealized numerical studies, pointing to an unexpected sensitivity of the heat transport efficiency to the precise distribution of heat sources and sinks, which greatly varies from planets to stars. 
    more » « less