skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stability and optimal decay for a system of 3D anisotropic Boussinesq equations
Abstract This paper focuses on a system of three-dimensional (3D) Boussinesq equations modeling anisotropic buoyancy-driven fluids. The goal here is to solve the stability and large-time behavior problem on perturbations near the hydrostatic balance, a prominent equilibrium in fluid dynamics, atmospherics and astrophysics. Due to the lack of the vertical kinematic dissipation and the horizontal thermal diffusion, this stability problem is difficult. When the spatial domain is Ω = R 2 × T with T = [ − 1 / 2 , 1 / 2 ] being a 1D periodic box, this paper establishes the desired stability for fluids with certain symmetries. The approach here is to distinguish the vertical averages of the velocity and temperature from their corresponding oscillation parts. In addition, the oscillation parts are shown to decay exponentially to zero in time.  more » « less
Award ID(s):
2104682
PAR ID:
10322510
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Nonlinearity
Volume:
34
Issue:
8
ISSN:
0951-7715
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper focuses on a 2D magnetohydrodynamic system with only horizontal dissipation in the domain$$\Omega = \mathbb {T}\times \mathbb {R}$$with$$\mathbb {T}=[0,\,1]$$being a periodic box. The goal here is to understand the stability problem on perturbations near the background magnetic field$$(1,\,0)$$. Due to the lack of vertical dissipation, this stability problem is difficult. This paper solves the desired stability problem by simultaneously exploiting two smoothing and stabilizing mechanisms: the enhanced dissipation due to the coupling between the velocity and the magnetic fields, and the strong Poincaré type inequalities for the oscillation part of the solution, namely the difference between the solution and its horizontal average. In addition, the oscillation part of the solution is shown to converge exponentially to zero in$$H^{1}$$as$$t\to \infty$$. As a consequence, the solution converges to its horizontal average asymptotically. 
    more » « less
  2. The flow in a Hele-Shaw cell with a time-increasing gap poses a unique shrinking interface problem. When the upper plate of the cell is lifted perpendicularly at a prescribed speed, the exterior less viscous fluid penetrates the interior more viscous fluid, which generates complex, time-dependent interfacial patterns through the Saffman–Taylor instability. The pattern formation process sensitively depends on the lifting speed and is still not fully understood. For some lifting speeds, such as linear or exponential speed, the instability is transient and the interface eventually shrinks as a circle. However, linear stability analysis suggests there exist shape invariant shrinking patterns if the gap $b(t)$ is increased more rapidly: $$b(t)=\left (1-({7}/{2})\tau \mathcal {C} t\right )^{-{2}/{7}}$$ , where $$\tau$$ is the surface tension and $$\mathcal {C}$$ is a function of the interface perturbation mode $$k$$ . Here, we use a spectrally accurate boundary integral method together with an efficient time adaptive rescaling scheme, which for the first time makes it possible to explore the nonlinear limiting dynamical behaviour of a vanishing interface. When the gap is increased at a constant rate, our numerical results quantitatively agree with experimental observations (Nase et al. , Phys. Fluids , vol. 23, 2011, 123101). When we use the shape invariant gap $b(t)$ , our nonlinear results reveal the existence of $$k$$ -fold dominant, one-dimensional, web-like networks, where the fractal dimension is reduced to almost unity at late times. We conclude by constructing a morphology diagram for pattern selection that relates the dominant mode $$k$$ of the vanishing interface and the control parameter $$\mathcal {C}$$ . 
    more » « less
  3. Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)
    In the Min k-Cut problem, the input is a graph G and an integer k. The task is to find a partition of the vertex set of G into k parts, while minimizing the number of edges that go between different parts of the partition. The problem is NP-complete, and admits a simple 3ⁿ⋅n^𝒪(1) time dynamic programming algorithm, which can be improved to a 2ⁿ⋅n^𝒪(1) time algorithm using the fast subset convolution framework by Björklund et al. [STOC'07]. In this paper we give an algorithm for Min k-Cut with running time 𝒪((2-ε)ⁿ), for ε > 10^{-50}. This is the first algorithm for Min k-Cut with running time 𝒪(cⁿ) for c < 2. 
    more » « less
  4. We prove the nonlinear stability of the asymptotic behaviour of perturbations of subfamilies of Kasner solutions in the contracting time direction within the class of polarized T 2 -symmetric solutions of the vacuum Einstein equations with arbitrary cosmological constant Λ . This stability result generalizes the results proven in Ames E et al. (2022 Stability of AVTD Behavior within the Polarized T 2 -symmetric vacuum spacetimes. Ann. Henri Poincaré . ( doi:10.1007/s00023-021-01142-0 )), which focus on the Λ = 0 case, and as in that article, the proof relies on an areal time foliation and Fuchsian techniques. Even for Λ = 0 , the results established here apply to a wider class of perturbations of Kasner solutions within the family of polarized T 2 -symmetric vacuum solutions than those considered in Ames E et al. (2022 Stability of AVTD Behavior within the Polarized T 2 -symmetric vacuum spacetimes. Ann. Henri Poincaré . ( doi:10.1007/s00023-021-01142-0 )) and Fournodavlos G et al. (2020 Stable Big Bang formation for Einstein’s equations: the complete sub-critical regime . Preprint. ( http://arxiv.org/abs/2012.05888 )). Our results establish that the areal time coordinate takes all values in ( 0 , T 0 ] for some T 0 > 0 , for certain families of polarized T 2 -symmetric solutions with cosmological constant. This article is part of the theme issue ‘The future of mathematical cosmology, Volume 1’. 
    more » « less
  5. In this paper, we study the dynamics of fluids in porous media governed by Darcy’s law: the Muskat problem. We consider the setting of two immiscible fluids of different densities and viscosities under the influence of gravity in which one fluid is completely surrounded by the other. This setting is gravity unstable because along a portion of the interface, the denser fluid must be above the other. Surprisingly, even without capillarity, the circle-shaped bubble is a steady state solution moving with vertical constant velocity determined by the density jump between the fluids. Taking advantage of our discovery of this steady state, we are able to prove global in time existence and uniqueness of dynamic bubbles of nearly circular shapes under the influence of surface tension. We prove this global existence result for low regularity initial data. Moreover, we prove that these solutions are instantly analytic and decay exponentially fast in time to the circle. 
    more » « less