skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microphysical processes producing high ice water contents (HIWCs) in tropical convective clouds during the HAIC-HIWC field campaign: evaluation of simulations using bulk microphysical schemes
Abstract. Regions with high ice water content (HIWC), composed of mainly small ice crystals, frequently occur over convective clouds in the tropics. Such regions can have median mass diameters (MMDs) <300 µm and equivalent radar reflectivities <20 dBZ. To explore formation mechanisms for these HIWCs, high-resolution simulations of tropical convective clouds observed on 26 May 2015 during the High Altitude Ice Crystals – High Ice Water Content (HAIC-HIWC) international field campaign based out of Cayenne, French Guiana, are conducted using the Weather Research and Forecasting (WRF) model with four different bulk microphysics schemes: the WRF single‐moment 6‐class microphysics scheme (WSM6), the Morrison scheme, and the Predicted Particle Properties (P3) scheme with one- and two-ice options. The simulations are evaluated against data from airborne radar and multiple cloud microphysics probes installed on the French Falcon 20 and Canadian National Research Council (NRC) Convair 580 sampling clouds at different heights. WRF simulations with different microphysics schemes generally reproduce the vertical profiles of temperature, dew-point temperature, and winds during this event compared with radiosonde data, and the coverage and evolution of this tropical convective system compared to satellite retrievals. All of the simulations overestimate the intensity and spatial extent of radar reflectivity by over 30 % above the melting layer compared to the airborne X-band radar reflectivity data. They also miss the peak of the observed ice number distribution function for 0.1<1 mm. Even though the P3 scheme has a very different approach representing ice, it does not produce greatly different total condensed water content or better comparison to other observations in this tropical convective system. Mixed-phase microphysical processes at −10 ∘C are associated with the overprediction of liquid water content in the simulations with the Morrison and P3 schemes. The ice water content at −10 ∘C increases mainly due to the collection of liquid water by ice particles, which does not increase ice particle number but increases the mass/size of ice particles and contributes to greater simulated radar reflectivity.  more » « less
Award ID(s):
1842094
PAR ID:
10322523
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
21
Issue:
9
ISSN:
1680-7324
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. High ice water content (HIWC) regions in tropical deep convective clouds, composed of high concentrations of small ice crystals, were not reproduced by Weather Research and Forecasting (WRF) model simulations at 1 km horizontal grid spacing using four different bulk microphysics schemes (i.e., the WRF single‐moment 6‐class microphysics scheme (WSM6), the Morrison scheme and the Predicted Particle Properties (P3) scheme with one- and two-ice options) for conditions encountered during the High Altitude Ice Crystals (HAIC) and HIWC experiment. Instead, overestimates of radar reflectivity and underestimates of ice number concentrations were realized. To explore formation mechanisms for large numbers of small ice crystals in tropical convection, a series of quasi-idealized WRF simulations varying the model resolution, aerosol profile, and representation of secondary ice production (SIP) processes are conducted based on an observed radiosonde released at Cayenne during the HAIC-HIWC field campaign. The P3 two-ice category configuration, which has two “free” ice categories to represent all ice-phase hydrometeors, is used. Regardless of the horizontal grid spacing or aerosol profile used, without including SIP processes the model produces total ice number concentrations about 2 orders of magnitude less than observed at −10 ∘C and about an order of magnitude less than observed at −30 ∘C but slightly overestimates the total ice number concentrations at −45 ∘C. Three simulations including one of three SIP mechanisms separately (i.e., the Hallett–Mossop mechanism, fragmentation during ice–ice collisions, and shattering of freezing droplets) also do not replicate observed HIWCs, with the results of the simulation including shattering of freezing droplets most closely resembling the observations. The simulation including all three SIP processes produces HIWC regions at all temperature levels, remarkably consistent with the observations in terms of ice number concentrations and radar reflectivity, which is not replicated using the original P3 two-ice category configuration. This simulation shows that primary ice production plays a key role in generating HIWC regions at temperatures <-40 ∘C, shattering of freezing droplets dominates ice particle production in HIWC regions at temperatures between −15 and 0 ∘C during the early stage of convection, and fragmentation during ice–ice collisions dominates at temperatures between −15 and 0 ∘C during the later stage of convection and at temperatures between −40 and −20 ∘C over the whole convection period. This study confirms the dominant role of SIP processes in the formation of numerous small crystals in HIWC regions. 
    more » « less
  2. Abstract. Secondary ice production (SIP) is an important physicalphenomenon that results in an increase in the ice particle concentration and cantherefore have a significant impact on the evolution of clouds. In thisstudy, idealized simulations of a mesoscale convective system (MCS) wereconducted using a high-resolution (250 m horizontal grid spacing) mesoscalemodel and a detailed bulk microphysics scheme in order to examine theimpacts of SIP on the microphysics and dynamics of a simulated tropical MCS.The simulations were compared to airborne in situ and remote sensing observationscollected during the “High Altitude Ice Crystals – High Ice Water Content”(HAIC-HIWC) field campaign in 2015. It was found that the observed high icenumber concentration can only be simulated by models that include SIPprocesses. The inclusion of SIP processes in the microphysics scheme is crucialfor the production and maintenance of the high ice water content observed intropical convection. It was shown that SIP can enhance the strength of theexisting convective updrafts and result in the initiation of new updraftsabove the melting layer. Agreement between the simulations and observationshighlights the impacts of SIP on the maintenance of tropical MCSs in natureand the importance of including SIP parameterizations in models. 
    more » « less
  3. Global cloud coverage has a substantial impact on local and global radiative budgets. It is necessary to correctly represent clouds in numerical weather models to improve both weather and climate predictions. This study evaluates in situ airborne observations of cloud microphysical properties and compares results with the Weather Research and Forecasting model (WRF) and Community Atmosphere Model version 5 (CAM5). Dynamical conditions producing supersaturated conditions with respect to ice at high altitudes in regions diagnosed by convective activity are explored using observations taken from the Deep Convective Clouds and Chemistry (DC3) campaign, and results are compared with simulated data from WRF. The WRF analysis tests multiple cloud microphysics schemes and finds the model requires much stronger updrafts to initiate large magnitudes of ice supersaturation (ISS) relative to observations. This is primarily due to the microphysics schemes over-predicting ice particle number concentrations (Ncice), which rapidly deplete the available water vapor. The frequency of different cloud phases and the distribution of relative humidity (RH) over the Southern Ocean is explored using in situ airborne observations taken from the O2/N2 Ratio and CO2 Airborne Southern Ocean Study (ORCAS) and compared with simulated data from CAM5. The CAM5 simulations produce comparable distributions of RH in clear-sky conditions at warmer temperatures (>-20°C). However, simulations fail to capture high frequencies of clear-sky ISS at colder temperatures (< 40°C). In addition, CAM5 underestimates the frequency of subsaturated conditions within ice phase clouds from -40°‒0°C. 
    more » « less
  4. In this study, a polarimetric radar forward model operator was developed for the Weather Research and Forecasting (WRF) model that was based on a scattering algorithm using the T-matrix methodology. Three microphysics schemes—Thompson, Morrison 2-moment, and Milbrandt-Yau 2-moment—were supported in the operator. This radar forward operator used the microphysics, thermodynamic, and wind fields from WRF model forecasts to compute horizontal reflectivity, radial velocity, and polarimetric variables including differential reflectivity (ZDR) and specific differential phase (KDP) for S-band radar. A case study with severe convective storms was used to examine the accuracy of the radar operator. Output from the radar operator was compared to real radar observations from the Weather Surveillance Radar–1988 Doppler (WSR-88D) radar. The results showed that the radar forward operator generated realistic polarimetric signatures. The distribution of polarimetric variables agreed well with the hydrometer properties produced by different microphysics schemes. Similar to the observed polarimetric signatures, radar operator output showed ZDR and KDP columns from low-to-mid troposphere, reflecting the large amount of rain within strong updrafts. The Thompson scheme produced a better simulation for the hail storm with a ZDR hole to indicate the existence of graupel in the low troposphere. 
    more » « less
  5. In this study, a polarimetric radar forward model operator was developed for the Weather Research and Forecasting (WRF) model that was based on a scattering algorithm using the T-matrix methodology. Three microphysics schemes—Thompson, Morrison 2-moment, and Milbrandt-Yau 2-moment—were supported in the operator. This radar forward operator used the microphysics, thermodynamic, and wind fields from WRF model forecasts to compute horizontal reflectivity, radial velocity, and polarimetric variables including differential reflectivity (ZDR) and specific differential phase (KDP) for S-band radar. A case study with severe convective storms was used to examine the accuracy of the radar operator. Output from the radar operator was compared to real radar observations from the Weather Surveillance Radar–1988 Doppler (WSR-88D) radar. The results showed that the radar forward operator generated realistic polarimetric signatures. The distribution of polarimetric variables agreed well with the hydrometer properties produced by different microphysics schemes. Similar to the observed polarimetric signatures, radar operator output showed ZDR and KDP columns from low-to-mid troposphere, reflecting the large amount of rain within strong updrafts. The Thompson scheme produced a better simulation for the hail storm with a ZDR hole to indicate the existence of graupel in the low troposphere. 
    more » « less