skip to main content

Title: A Tutorial on Matrix Perturbation Theory (using compact matrix notation)
Analytic perturbation theory for matrices and operators is an immensely useful mathematical technique. Most elementary introductions to this method have their background in the physics literature, and quantum mechanics in particular. In this note, we give an introduction to this method that is independent of any physics notions, and relies purely on concepts from linear algebra. An additional feature of this presentation is that matrix notation and methods are used throughout. In particular, we formulate the equations for each term of the analytic expansions of eigenvalues and eigenvectors as {\em matrix equations}, namely Sylvester equations in particular. Solvability conditions and explicit expressions for solutions of such matrix equations are given, and expressions for each term in the analytic expansions are given in terms of those solutions. This unified treatment simplifies somewhat the complex notation that is commonly seen in the literature, and in particular, provides relatively compact expressions for the non-Hermitian and degenerate cases, as well as for higher order terms.  more » « less
Award ID(s):
1932777 1763064
Author(s) / Creator(s):
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this paper, based on simplified Boltzmann equation, we explore the inverse-design of mesoscopic models for compressible flow using the Chapman-Enskog analysis. Starting from the single-relaxation-time Boltzmann equation with an additional source term, two model Boltzmann equations for two reduced distribution functions are obtained, each then also having an additional undetermined source term. Under this general framework and using Navier-Stokes-Fourier (NSF) equations as constraints, the structures of the distribution functions are obtained by the leading-order Chapman-Enskog analysis. Next, five basic constraints for the design of the two source terms are obtained in order to recover the NSF system in the continuum limit. These constraints allow for adjustable bulk-to-shear viscosity ratio, Prandtl number as well as a thermal energy source. The specific forms of the two source terms can be determined through proper physical considerations and numerical implementation requirements. By employing the truncated Hermite expansion, one design for the two source terms is proposed. Moreover, three well-known mesoscopic models in the literature are shown to be compatible with these five constraints. In addition, the consistent implementation of boundary conditions is also explored by using the Chapman-Enskog expansion at the NSF order. Finally, based on the higher-order Chapman-Enskog expansion of the distribution functions, we derive the complete analytical expressions for the viscous stress tensor and the heat flux. Some underlying physics can be further explored using the DNS simulation data based on the proposed model.

    more » « less
  2. Abstract We consider the existence and spectral stability of static multi-kink structures in the discrete sine-Gordon equation, as a representative example of the family of discrete Klein–Gordon models. The multi-kinks are constructed using Lin’s method from an alternating sequence of well-separated kink and antikink solutions. We then locate the point spectrum associated with these multi-kink solutions by reducing the spectral problem to a matrix equation. For an m -structure multi-kink, there will be m eigenvalues in the point spectrum near each eigenvalue of the primary kink, and, as long as the spectrum of the primary kink is imaginary, the spectrum of the multi-kink will be as well. We obtain analytic expressions for the eigenvalues of a multi-kink in terms of the eigenvalues and corresponding eigenfunctions of the primary kink, and these are in very good agreement with numerical results. We also perform numerical time-stepping experiments on perturbations of multi-kinks, and the outcomes of these simulations are interpreted using the spectral results. 
    more » « less
  3. Summary

    This paper presents an efficient method to perform structured matrix approximation by separation and hierarchy (SMASH), when the original dense matrix is associated with a kernel function. Given the points in a domain, a tree structure is first constructed based on an adaptive partition of the computational domain to facilitate subsequent approximation procedures. In contrast to existing schemes based on either analytic or purely algebraic approximations, SMASH takes advantage of both approaches and greatly improves efficiency. The algorithm follows a bottom‐up traversal of the tree and is able to perform the operations associated with each node on the same level in parallel. A strong rank‐revealing factorization is applied to the initial analytic approximation in theseparationregime so that a special structure is incorporated into the final nested bases. As a consequence, the storage is significantly reduced on one hand and a hierarchy of the original grid is constructed on the other hand. Due to this hierarchy, nested bases at upper levels can be computed in a similar way as the leaf level operations but on coarser grids. The main advantages of SMASH include its simplicity of implementation, its flexibility to construct various hierarchical rank structures, and a low storage cost. The efficiency and robustness of SMASH are demonstrated through various test problems arising from integral equations, structured matrices, etc.

    more » « less
  4. Abstract We consider a singular perturbation for a family of analytic symplectic maps of the annulus possessing a KAM torus. The perturbation introduces dissipation and contains an adjustable parameter. By choosing the adjustable parameter, one can ensure that the torus persists under perturbation. Such models are common in celestial mechanics. In field theory, the adjustable parameter is called the counterterm and in celestial mechanics, the drift . It is known that there are formal expansions in powers of the perturbation both for the quasi-periodic solution and the counterterm. We prove that the asymptotic expansions for the quasiperiodic solutions and the counterterm satisfy Gevrey estimates. That is, the n th term of the expansion is bounded by a power of n !. The Gevrey class (the power of n !) depends only on the Diophantine condition of the frequency and the order of the friction coefficient in powers of the perturbative parameter. The method of proof we introduce may be of interest beyond the problem considered here. We consider a modified Newton method in a space of power expansions. As is custumary in KAM theory, each step of the method is estimated in a smaller domain. In contrast with the KAM results, the domains where we control the Newton method shrink very fast and the Newton method does not prove that the solutions are analytic. On the other hand, by examining carefully the process, we can obtain estimates on the coefficients of the expansions and conclude the series are Gevrey. 
    more » « less
  5. Abstract  
    more » « less