skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gevrey estimates for asymptotic expansions of Tori in weakly dissipative systems*
Abstract We consider a singular perturbation for a family of analytic symplectic maps of the annulus possessing a KAM torus. The perturbation introduces dissipation and contains an adjustable parameter. By choosing the adjustable parameter, one can ensure that the torus persists under perturbation. Such models are common in celestial mechanics. In field theory, the adjustable parameter is called the counterterm and in celestial mechanics, the drift . It is known that there are formal expansions in powers of the perturbation both for the quasi-periodic solution and the counterterm. We prove that the asymptotic expansions for the quasiperiodic solutions and the counterterm satisfy Gevrey estimates. That is, the n th term of the expansion is bounded by a power of n !. The Gevrey class (the power of n !) depends only on the Diophantine condition of the frequency and the order of the friction coefficient in powers of the perturbative parameter. The method of proof we introduce may be of interest beyond the problem considered here. We consider a modified Newton method in a space of power expansions. As is custumary in KAM theory, each step of the method is estimated in a smaller domain. In contrast with the KAM results, the domains where we control the Newton method shrink very fast and the Newton method does not prove that the solutions are analytic. On the other hand, by examining carefully the process, we can obtain estimates on the coefficients of the expansions and conclude the series are Gevrey.  more » « less
Award ID(s):
1800241
PAR ID:
10358787
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Nonlinearity
Volume:
35
Issue:
5
ISSN:
0951-7715
Page Range / eLocation ID:
2424 to 2473
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Analytic perturbation theory for matrices and operators is an immensely useful mathematical technique. Most elementary introductions to this method have their background in the physics literature, and quantum mechanics in particular. In this note, we give an introduction to this method that is independent of any physics notions, and relies purely on concepts from linear algebra. An additional feature of this presentation is that matrix notation and methods are used throughout. In particular, we formulate the equations for each term of the analytic expansions of eigenvalues and eigenvectors as {\em matrix equations}, namely Sylvester equations in particular. Solvability conditions and explicit expressions for solutions of such matrix equations are given, and expressions for each term in the analytic expansions are given in terms of those solutions. This unified treatment simplifies somewhat the complex notation that is commonly seen in the literature, and in particular, provides relatively compact expressions for the non-Hermitian and degenerate cases, as well as for higher order terms. 
    more » « less
  2. We propose a new two-parameter family of hybrid traveling-standing (TS) water waves in infinite depth that evolve to a spatial translation of their initial condition at a later time. We use the square root of the energy as an amplitude parameter and introduce a traveling parameter that naturally interpolates between pure traveling waves moving in either direction and pure standing waves in one of four natural phase configurations. The problem is formulated as a two-point boundary value problem and a quasi-periodic torus representation is presented that exhibits TS-waves as nonlinear superpositions of counter-propagating traveling waves. We use an overdetermined shooting method to compute nearly 50,000 TS-wave solutions and explore their properties. Examples of waves that periodically form sharp crests with high curvature or dimpled crests with negative curvature are presented. We find that pure traveling waves maximize the magnitude of the horizontal momentum among TS-waves of a given energy. Numerical evidence suggests that the two-parameter family of TS-waves contains many gaps and disconnections where solutions with the given parameters do not exist. Some of these gaps are shown to persist to zero-amplitude in a fourth-order perturbation expansion of the solutions in powers of the amplitude parameter. Analytic formulas for the coefficients of this perturbation expansion are identified using Chebyshev interpolation of solutions computed in quadruple-precision. 
    more » « less
  3. We address the Mach limit problem for the Euler equations in an exterior domain with an analytic boundary. We first prove the existence of tangential analytic vector fields for the exterior domain with constant analyticity radii and introduce an analytic norm in which we distinguish derivatives taken from different directions. Then we prove the uniform boundedness of the solutions in the analytic space on a time interval independent of the Mach number, and Mach limit holds in the analytic norm. The results extend more generally to Gevrey initial data with convergence in a Gevrey norm. 
    more » « less
  4. Tobias Ekholm (Ed.)
    We prove nonlinear asymptotic stability of a large class of monotonic shear flows among solutions of the 2D Euler equations in the channel $$\mathbb{T}\times[0,1]$$. More precisely, we consider shear flows $(b(y),0)$ given by a function $$b$$ which is Gevrey smooth, strictly increasing, and linear outside a compact subset of the interval $(0,1)$ (to avoid boundary contributions which are incompatible with inviscid damping). We also assume that the associated linearized operator satisfies a suitable spectral condition, which is needed to prove linear inviscid damping. Under these assumptions, we show that if $$u$$ is a solution which is a small and Gevrey smooth perturbation of such a shear flow $(b(y),0)$ at time $t=0$, then the velocity field $$u$$ converges strongly to a nearby shear flow as the time goes to infinity. This is the first nonlinear asymptotic stability result for Euler equations around general steady solutions for which the linearized flow cannot be explicitly solved. 
    more » « less
  5. Abstract Consider an analytic Hamiltonian system near its analytic invariant torus $$\mathcal T_0$$ carrying zero frequency. We assume that the Birkhoff normal form of the Hamiltonian at $$\mathcal T_0$$ is convergent and has a particular form: it is an analytic function of its non-degenerate quadratic part. We prove that in this case there is an analytic canonical transformation—not just a formal power series—bringing the Hamiltonian into its Birkhoff normal form. 
    more » « less