- Award ID(s):
- 1940952
- Publication Date:
- NSF-PAR ID:
- 10322698
- Journal Name:
- Journal of Physics D: Applied Physics
- Volume:
- 55
- Issue:
- 9
- ISSN:
- 0022-3727
- Sponsoring Org:
- National Science Foundation
More Like this
-
Commonly used batch reactors for nanomaterial synthesis can be difficult to scale since rapid particle nucleation and growth require efficient mixing to produce monodisperse particle size distributions (PSD). Monodisperse particles can be synthesized through efficiently mixing the reactants in the liquid phase using a jet-mixing reactor. Using common synthesis precursors and concentrations, the jet-mixing reactor produces silver nanoparticles with a diameter of 5 ± 2 nm, as characterized by TEM, and a monomodal surface plasmon resonance (SPR) in the UV-vis spectrum. In comparison, a batch synthesis using the same concentrations of reactants produces nanoparticles with a diameter of 9 ± 4 nm and a bimodal SPR, indicating that jet-mixing produces a more monodisperse particle size distribution than batch synthesis. For the jet-mixing synthesis, the concentration of the capping agent can be reduced to a value of 0.05 mM while retaining a narrow full-width of half-maximum (FWHM) of the SPR spectrum. Interestingly, decreasing the capping agent quantity from the standard concentration of 0.2 mM to 0.05 mM decreases the FWHM of the SPR, corresponding to a more monodisperse PSD at lower capping agent concentration. This result is attributed to the increased stabilization at lower ion concentrations in the solution. For lowmore »
-
Low-temperature direct ammonia fuel cells (DAFCs) use carbon-neutral ammonia as a fuel, which has attracted increasing attention recently due to ammonia's low source-to-tank energy cost, easy transport and storage, and wide availability. However, current DAFC technologies are greatly limited by the kinetically sluggish ammonia oxidation reaction (AOR) at the anode. Herein, we report an AOR catalyst, in which ternary PtIrZn nanoparticles with an average size of 2.3 ± 0.2 nm were highly dispersed on a binary composite support comprising cerium oxide (CeO 2 ) and zeolitic imidazolate framework-8 (ZIF-8)-derived carbon (PtIrZn/CeO 2 -ZIF-8) through a sonochemical-assisted synthesis method. The PtIrZn alloy, with the aid of abundant OH ad provided by CeO 2 and uniform particle dispersibility contributed by porous ZIF-8 carbon (surface area: ∼600 m 2 g −1 ), has shown highly efficient catalytic activity for the AOR in alkaline media, superior to that of commercial PtIr/C. The rotating disk electrode (RDE) results indicate a lower onset potential (0.35 vs. 0.43 V), relative to the reversible hydrogen electrode at room temperature, and a decreased activation energy (∼36.7 vs. 50.8 kJ mol −1 ) relative to the PtIr/C catalyst. Notably, the PtIrZn/CeO 2 -ZIF-8 catalyst was assembled with a high-performance hydroxidemore »
-
It has been widely suggested in literature that a lithium fluoride (LiF)-rich solid electrolyte interphase (SEI) affects Coulombic efficiency (CE) of the Li metal anode used with liquid electrolytes. Yet, the influence of LiF on Li metal deposition has been challenging to examine. Herein, we developed a method to synthesize LiF nanoscale particles with tunable sizes (30–300 nm) on Cu electrodes by electrochemical reduction of fluorinated gases under controlled discharge rates and capacities. The impact of LiF nanoparticles on overpotential and morphology of Li deposition was further studied in a conventional carbonate electrolyte. By cyclic voltammetry, Li plating overpotentials exhibit a clear correlation with the total surface area of LiF particles. Additionally, Li metal deposits (10
μ Ah cm−2) nucleated under galvanostatic conditions (0.5 mA cm−2) on Cu/LiF showed increasing feature sizes with a lower average LiF particle size and higher coverage of LiF. However, no significant improvement in CE was observed for LiF-coated Cu. Our findings provide evidence that a particle-based mode of SEI fluorination can influence early-stage Li nucleation to a modest degree, and this effect is maximized when LiF is uniformly and densely distributed. However, sparser and larger LiF have vanishing or even detrimental effect on cycling performance. -
Metastable phases of the photoswitchable molecular magnet K0.3Co[Fe(CN)6]0.77 ⋅ nH2O in sub-micrometer particles have been structurally investigated by synchrotron powder x-ray diffraction (PXRD) measurements. The K0.3Co[Fe(CN)6]0.77 ⋅ nH2O bulk compound (studied here with a sample having average particle size of 500 nm) undergoes a charge transfer coupled spin transition (CTCST), where spin configurations change between a paramagnetic CoII( S = 3/2) –FeIII( S = 1/2) high-temperature (HT) state and a diamagnetic CoIII( S = 0) –FeII( S = 0) low-temperature (LT) state. The bulk compound exhibits a unique intermediate (IM) phase, which corresponds to a mixture of HT and LT spin states that depend on the cooling rate. Several hidden metastable HT states emerge as a function of thermal and photo stimuli, namely: (1) a quench (Q) state generated from the HT state by flash cooling, (2) a LTPX state obtained by photoexcitation from the LT state derived by thermal relaxation from the Q state, and (3) an IMPX state accessed by photo-irradiation from the IM state. A sample with a smaller particle size, 135 nm, is investigated for which the particles are on the scale of the coherent LT domains in the IM phase within the larger 500 nm sample. PXRD studies under controlled thermal and/or optical excitations have clarified that themore »
-
Silicon as a promising candidate for the next-generation high-capacity lithium-ion battery anode is characterized by outstanding capacity, high abundance, low operational voltage, and environmental benignity. However, large volume changes during Si lithiation and de-lithiation can seriously impair its long-term cyclability. Although extensive research efforts have been made to improve the electrochemical performance of Si-based anodes, there is a lack of efficient fabrication methods that are low cost, scalable, and self-assembled. In this report, co-axial fibrous silicon asymmetric membrane has been synthesized using a scalable and straightforward phase inversion method combined with dip coating as inspired by the hollow fiber membrane technology that has been successfully commercialized over the last decades to provide billions of gallons of purified drinking water worldwide. We demonstrate that ~ 90% initial capacity of co-axial fibrous Si asymmetric membrane electrode can be maintained after 300 cycles applying a current density of 400 mA g−1. The diameter of fibers, size of silicon particles, type of polymers, and exterior coating have been identified as critical factors that can influence the electrode stability, initial capacity, and rate performance. Much enhanced electrochemical performance can be harvested from a sample that has thinner fiber diameter, smaller silicon particle, lower silicon content, and porousmore »