This content will become publicly available on February 1, 2023
- Publication Date:
- NSF-PAR ID:
- 10322699
- Journal Name:
- Sensors
- Volume:
- 22
- Issue:
- 3
- ISSN:
- 1424-8220
- Sponsoring Org:
- National Science Foundation
More Like this
-
Concurrent respiration monitoring of multiple subjects remains a challenge in microwave Doppler radar-based non-contact physiological sensing technology. Prior research using Independent component analysis with the JADE algorithm has been limited to the separation of respiratory signatures for normal breathing patterns. This paper investigates the feasibility of using the ICA-JADE algorithm with a 24-GHz phase comparison monopulse radar transceiver for separating respiratory signatures from combined mixtures of varied breathing patterns. Normal, fast, and slow breathing pattern variations likely to occur due to physiological activity, and emotional stress were used as a basis for assessing separation robustness. Experimental results showed efficacy for recognition of three different breathing patterns, and isolation of respiratory signatures with an accuracy of100% for normal breathing, 92% for slow breathing, and 83.78% for fast breathing using ICA-JADE. Breathing pattern variations were observed to affect the signal-to-noise ratio through multiple mechanisms, decreasing with an increase in the number of breathing cycles and associated motion artifacts. Additionally, for removing motion artifacts of fast breathing pattern empirical mode decomposition (EMD) is employed, and for slow breathing pattern, increasing the breathing cycles helps to achieve an accuracy of 89.2% and 94.5% respectively.
-
Multiple scattering is a major barrier that limits the optical imaging depth in scattering media. In order to alleviate this effect, we demonstrate aberration-diverse optical coherence tomography (AD-OCT), which exploits the phase correlation between the deterministic signals from single-scattered photons to suppress the random background caused by multiple scattering and speckle. AD-OCT illuminates the sample volume with diverse aberrated point spread functions, and computationally removes these intentionally applied aberrations. After accumulating 12 astigmatism-diverse OCT volumes, we show a 10 dB enhancement in signal-to-background ratio via a coherent average of reconstructed signals from a USAF target located 7.2 scattering mean free paths below a thick scattering layer, and a 3× speckle contrast reduction from an incoherent average of reconstructed signals inside the scattering layer. This AD-OCT method, when implemented using astigmatic illumination, is a promising approach for ultra-deep volumetric optical coherence microscopy.
-
McMahon, Katherine (Ed.)ABSTRACT Interactions between phytoplankton and heterotrophic bacteria fundamentally shape marine ecosystems by controlling primary production, structuring marine food webs, mediating carbon export, and influencing global climate. Phytoplankton-bacterium interactions are facilitated by secreted compounds; however, linking these chemical signals, their mechanisms of action, and their resultant ecological consequences remains a fundamental challenge. The bacterial quorum-sensing signal 2-heptyl-4-quinolone (HHQ) induces immediate, yet reversible, cellular stasis (no cell division or mortality) in the coccolithophore Emiliania huxleyi ; however, the mechanism responsible remains unknown. Using transcriptomic and proteomic approaches in combination with diagnostic biochemical and fluorescent cell-based assays, we show that HHQ exposure leads to prolonged S-phase arrest in phytoplankton coincident with the accumulation of DNA damage and a lack of repair despite the induction of the DNA damage response (DDR). While this effect is reversible, HHQ-exposed phytoplankton were also protected from viral mortality, ascribing a new role of quorum-sensing signals in regulating multitrophic interactions. Furthermore, our data demonstrate that in situ measurements of HHQ coincide with areas of enhanced micro- and nanoplankton biomass. Our results suggest bacterial communication signals as emerging players that may be one of the contributing factors that help structure complex microbial communities throughout the ocean. IMPORTANCE Bacteria and phytoplanktonmore »
-
SUMMARY Seismograms contain multiple sources of seismic waves, from distinct transient signals such as earthquakes to continuous ambient seismic vibrations such as microseism. Ambient vibrations contaminate the earthquake signals, while the earthquake signals pollute the ambient noise’s statistical properties necessary for ambient-noise seismology analysis. Separating ambient noise from earthquake signals would thus benefit multiple seismological analyses. This work develops a multitask encoder–decoder network named WaveDecompNet to separate transient signals from ambient signals directly in the time domain for 3-component seismograms. We choose the active-volcanic Big Island in Hawai’i as a natural laboratory given its richness in transients (tectonic and volcanic earthquakes) and diffuse ambient noise (strong microseism). The approach takes a noisy 3-component seismogram as input and independently predicts the 3-component earthquake and noise waveforms. The model is trained on earthquake and noise waveforms from the STandford EArthquake Dataset (STEAD) and on the local noise of seismic station IU.POHA. We estimate the network’s performance by using the explained variance metric on both earthquake and noise waveforms. We explore different neural network designs for WaveDecompNet and find that the model with long-short-term memory (LSTM) performs best over other structures. Overall, we find that WaveDecompNet provides satisfactory performance down to a signal-to-noisemore »
-
Full-duplex (FD) communication in many-antenna base stations (BSs) is hampered by self-interference (SI). This is because a FD node’s transmitting signal generates significant interference to its own receiver. Recent works have shown that it is possible to reduce/eliminate this SI in fully digital many-antenna systems, e.g., through transmit beamforming by using some spatial degrees of freedom to reduce SI instead of increasing the beamforming gain. On a parallel front, hybrid beamforming has recently emerged as a radio architecture that uses multiple antennas per FR chain. This can significantly reduce the cost of the end device (e.g., BS) but may also reduce the capacity or SI reduction gains of a fully digital radio system. This is because a fully digital radio architecture can change both the amplitude and phase of the wireless signal and send different data streams from each antenna element. Our goal in this paper is to quantify the performance gap between these two radio architectures in terms of SI cancellation and system capacity, particularly in multi-user MIMO setups. To do so, we experimentally compare the performance of a state-of-the-art fully digital many antenna FD solution to a hybrid beamforming architecture and compare the corresponding performance metrics leveraging amore »