skip to main content


Title: Using Visualization to Reduce the Cognitive Load of Threshold Concepts in Computer Programming
This Full Paper in the Research to Practice Category reports on an empirical empirical study in which novel educational tools and techniques were employed to teach fundamentals of problem decomposition - a cognitive task transcending disciplines. Within the discipline of computer science, problem decomposition is recognized as a foundational activity of software development. Factors that contribute to the complexity of this activity include: (1) recognizing patterns within an algorithm, (2) mapping the understanding of an algorithm to the syntax of a given programming language, and (3) complexity intrinsic to the problem domain itself. Cognitive load theory states that learning outcomes can be positively affected by reducing the extraneous cognitive load associated with learning objectives as well as by changing the nature of what is learned. In the study reported upon here, a novel instructional method was developed to decrease students' cognitive load. Novel instructional content supported by a custom visualization tool was used in a classroom setting in order to help novice programmers develop an understanding of function-based problem decomposition within the context of a visual domain. Performance on outcome measures (a quiz and assignment) were compared between the new method and the traditional teaching method demonstrated that students were significantly more successful at demonstrating mastery when using the new instructional method.  more » « less
Award ID(s):
1712080
NSF-PAR ID:
10322756
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2019 IEEE Frontiers in Education Conference (FIE)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Practice plays a critical role in learning engineering dynamics. Typical practice in a dynamics course involves solving textbook problems. These problems can impose great cognitive load on underprepared students because they have not mastered constituent knowledge and skills required for solving whole problems. For these students, learning can be improved by being engaged in deliberate practice. Deliberate practice refers to a type of practice aimed at improving specific constituent knowledge or skills. Compared to solving whole problems requiring the simultaneous use of multiple constituent skills, deliberate practice is usually focused on one component skill at a time, which results in less cognitive load and more specificity. Contemporary theories of expertise development have highlighted the influence of deliberate practice (DP) on achieving exceptional performance in sports, music, and various professional fields. Concurrently, there is an emerging method for improving learning efficiency of novices by combining deliberate practice with cognitive load theory (CLT), a cognitive-architecture-based theory for instructional design. Mechanics is a foundation for most branches of engineering. It serves to develop problem-solving skills and consolidate understanding of other subjects, such as applied mathematics and physics. Mechanics has been a challenging subject. Students need to understand governing principles to gain conceptual knowledge and acquire procedural knowledge to apply these principles to solve problems. Due to the difficulty in developing conceptual and procedural knowledge, mechanics courses are among those that receive high DFW rates (percentage of students receiving a grade of D or F or Withdrawing from a course), and students are more likely to leave engineering after taking mechanics courses. Deliberate practice can help novices develop good representations of the knowledge needed to produce superior problem solving performance. The goal of the present study is to develop deliberate practice techniques to improve learning effectiveness and to reduce cognitive load. Our pilot study results revealed that the student mental effort scores were negatively correlated with their knowledge test scores with r = -.29 (p < .05) after using deliberate practice strategies. This supports the claim that deliberate practice can improve student learning while reducing cognitive load. In addition, the higher the students’ knowledge test scores, the lower their mental effort was when taking the tests. In other words, the students who used deliberate practice strategies had better learning results with less cognitive load. To design deliberate practice, we often need to analyze students’ persistent problems caused by faulty mental models, also referred to as an intuitive mental model, and misconceptions. In this study, we continue to conduct an in-depth diagnostic process to identify students’ common mistakes and associated intuitive mental models. We then use the results to develop deliberate practice problems aimed at changing students’ cognitive strategies and mental models. 
    more » « less
  2. Practice plays a critical role in learning engineering dynamics. Typical practice in a dynamics course involves solving textbook problems. These problems can impose great cognitive load on underprepared students because they have not mastered constituent knowledge and skills required for solving whole problems. For these students, learning can be improved by being engaged in deliberate practice. Deliberate practice refers to a type of practice aimed at improving specific constituent knowledge or skills. Compared to solving whole problems requiring the simultaneous use of multiple constituent skills, deliberate practice is usually focused on one component skill at a time, which results in less cognitive load and more specificity. Contemporary theories of expertise development have highlighted the influence of deliberate practice (DP) on achieving exceptional performance in sports, music, and various professional fields. Concurrently, there is an emerging method for improving learning efficiency of novices by combining deliberate practice with cognitive load theory (CLT), a cognitive-architecture-based theory for instructional design. Mechanics is a foundation for most branches of engineering. It serves to develop problem-solving skills and consolidate understanding of other subjects, such as applied mathematics and physics. Mechanics has been a challenging subject. Students need to understand governing principles to gain conceptual knowledge and acquire procedural knowledge to apply these principles to solve problems. Due to the difficulty in developing conceptual and procedural knowledge, mechanics courses are among those that receive high DFW rates (percentage of students receiving a grade of D or F or Withdrawing from a course), and students are more likely to leave engineering after taking mechanics courses. Deliberate practice can help novices develop good representations of the knowledge needed to produce superior problem solving performance. The goal of the present study is to develop deliberate practice techniques to improve learning effectiveness and to reduce cognitive load. Our pilot study results revealed that the student mental effort scores were negatively correlated with their knowledge test scores with r = -.29 (p < .05) after using deliberate practice strategies. This supports the claim that deliberate practice can improve student learning while reducing cognitive load. In addition, the higher the students’ knowledge test scores, the lower their mental effort was when taking the tests. In other words, the students who used deliberate practice strategies had better learning results with less cognitive load. To design deliberate practice, we often need to analyze students’ persistent problems caused by faulty mental models, also referred to as an intuitive mental model, and misconceptions. In this study, we continue to conduct an in-depth diagnostic process to identify students’ common mistakes and associated intuitive mental models. We then use the results to develop deliberate practice problems aimed at changing students’ cognitive strategies and mental models. 
    more » « less
  3. Learning is usually conceptualized as a process during which new information is processed in working memory to form knowledge structures called schemas, which are stored in long-term memory. Practice plays a critical role in developing schemas through learning-by-doing. Contemporary expertise development theories have highlighted the influence of deliberate practice (DP) on achieving exceptional performance in sports, music, and different professional fields. Concurrently, there is an emerging method for improving learning efficiency by combining deliberate practice with cognitive load theory (CLT), a cognition-architecture-based theory for instructional design. Mechanics is a foundation for most branches of engineering. It serves to develop problem-solving skills and consolidate understanding of other subjects, such as applied mathematics and physics. Mechanics has been a challenging subject. Students need to understand governing principles to gain conceptual knowledge and acquire procedural knowledge to apply these principles to solve problems. Due to the difficulty in developing conceptual and procedural knowledge, mechanics courses are among those which receive high DFW rates (percentage of students receiving a grade of D or F or Withdrawing from a course) and students are more likely to leave engineering after taking mechanics courses. Since deliberate practice can help novices develop good representations of the knowledge needed to produce superior problem solving performance, this study is to evaluate how deliberate practice helps students learn mechanics during the process of schema acquisition and consolidation. Considering cognitive capacity limitations, we will apply cognitive load theory to develop deliberate practice to help students build declarative and procedural knowledge without exceeding their working memory limitations. We will evaluate the effects of three practice strategies based on CLT on schema acquisition and consolidation in two mechanics courses (i.e., Statics and Dynamics). Examples and assessment results will be provided to evaluate the effectiveness of the practice strategies as well as the challenges. 
    more » « less
  4. null (Ed.)
    Learning is usually conceptualized as a process during which new information is processed in working memory to form knowledge structures called schemas, which are stored in long-term memory. Practice plays a critical role in developing schemas through learning-by-doing. Contemporary expertise development theories have highlighted the influence of deliberate practice (DP) on achieving exceptional performance in sports, music, and different professional fields. Concurrently, there is an emerging method for improving learning efficiency by combining deliberate practice with cognitive load theory (CLT), a cognition-architecture-based theory for instructional design. Mechanics is a foundation for most branches of engineering. It serves to develop problem-solving skills and consolidate understanding of other subjects, such as applied mathematics and physics. Mechanics has been a challenging subject. Students need to understand governing principles to gain conceptual knowledge and acquire procedural knowledge to apply these principles to solve problems. Due to the difficulty in developing conceptual and procedural knowledge, mechanics courses are among those which receive high DFW rates (percentage of students receiving a grade of D or F or Withdrawing from a course) and students are more likely to leave engineering after taking mechanics courses. Since deliberate practice can help novices develop good representations of the knowledge needed to produce superior problem solving performance, this study is to evaluate how deliberate practice helps students learn mechanics during the process of schema acquisition and consolidation. Considering cognitive capacity limitations, we will apply cognitive load theory to develop deliberate practice to help students build declarative and procedural knowledge without exceeding their working memory limitations. We will evaluate the effects of three practice strategies based on CLT on the schema acquisition and consolidation in two mechanics courses (i.e., Statics and Dynamics). Examples and assessment results will be provided to evaluate the effectiveness of the practice strategies as well as the challenges. 
    more » « less
  5. Previous studies have convincingly shown that traditional, content-centered, and didactic teaching methods are not effective for developing a deep understanding and knowledge transfer. Nor does it adequately address the development of critical problem-solving skills. Active and collaborative instruction, coupled with effective means to encourage student engagement, invariably leads to better student learning outcomes irrespective of academic discipline. Despite these findings, the existing construction engineering programs, for the most part, consist of a series of fragmented courses that mainly focus on procedural skills rather than on the fundamental and conceptual knowledge that helps students become innovative problem-solvers. In addition, these courses are heavily dependent on traditional lecture-based teaching methods focused on well-structured and closed-ended problems that prepare students to plug variables into equations to get the answer. Existing programs rarely offer a systematic approach to allow students to develop a deep understanding of the engineering core concepts and discover systematic solutions for fundamental problems. Without properly understanding these core concepts, contextualized in domain-specific settings, students are not able to develop a holistic view that will help them to recognize the big picture and think outside the box to come up with creative solutions for arising problems. The long history of empirical learning in the field of construction engineering shows the significant potential of cognitive development through direct experience and reflection on what works in particular situations. Of course, the complex nature of the construction industry in the twenty-first century cannot afford an education through trial and error in the real environment. However, recent advances in computer science can help educators develop virtual environments and gamification platforms that allow students to explore various scenarios and learn from their experiences. This study aims to address this need by assessing the effectiveness of guided active exploration in a digital game environment on students’ ability to discover systematic solutions for fundamental problems in construction engineering. To address this objective, through a research project funded by the NSF Division of Engineering Education and Centers (EEC), we designed and developed a scenario-based interactive digital game, called Zebel, to guide students solve fundamental problems in construction scheduling. The proposed gamified pedagogical approach was designed based on the Constructivism learning theory and a framework that consists of six essential elements: (1) modeling; (2) reflection; (3) strategy formation; (4) scaffolded exploration; (5) debriefing; and (6) articulation. We also designed a series of pre- and post-assessment instruments for empirical data collection to assess the effectiveness of the proposed approach. The proposed gamified method was implemented in a graduate-level construction planning and scheduling course. The outcomes indicated that students with no prior knowledge of construction scheduling methods were able to discover systematic solutions for fundamental scheduling problems through their experience with the proposed gamified learning method. 
    more » « less